Spectrum of the Riemann-Hilbert-Poincaré problem for analytic functions

We study the Riemann-Hilbert-Poincaré boundary value problem for analytic function. This problem will lead to inhomogeneous Fuchsian differential equations. We find that its spectrum is not characterized by the smoothness of its coefficient on the boundary but by its interior analytic continuation p...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Complex variables, theory & application Jg. 50; H. 7-11; S. 497 - 505
Hauptverfasser: Dai, Dao-Qing, Liu, Ming-Sheng
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Taylor & Francis Group 10.06.2005
Schlagworte:
ISSN:0278-1077, 1563-5066
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We study the Riemann-Hilbert-Poincaré boundary value problem for analytic function. This problem will lead to inhomogeneous Fuchsian differential equations. We find that its spectrum is not characterized by the smoothness of its coefficient on the boundary but by its interior analytic continuation property. Moreover, the multiplicities of eigenfunctions for different eigenvalues are not necessarily the same even when the eigenvalues are small.
ISSN:0278-1077
1563-5066
DOI:10.1080/02781070500086552