Fixed Point Homing Shuffles

We study a family of maps from $S_n \to S_n$ we call fixed point homing shuffles. These maps generalize a few known problems such as Conway's Topswops, and a card shuffling process studied by Gweneth McKinley. We show that the iterates of these homing shuffles always converge, and characterize...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Discrete mathematics and theoretical computer science Jg. 27:1, Permutation...; H. Special issues
1. Verfasser: Parlett, Jonathan
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Discrete Mathematics & Theoretical Computer Science 18.08.2025
Schlagworte:
ISSN:1365-8050, 1365-8050
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We study a family of maps from $S_n \to S_n$ we call fixed point homing shuffles. These maps generalize a few known problems such as Conway's Topswops, and a card shuffling process studied by Gweneth McKinley. We show that the iterates of these homing shuffles always converge, and characterize the set $U_n$ of permutations that no homing shuffle sorts. We also study a homing shuffle that sorts anything not in $U_n$, and find how many iterations it takes to converge in the worst case. Updated formatting to fit with DMTCS requirements
ISSN:1365-8050
1365-8050
DOI:10.46298/dmtcs.14653