A bijection for nonorientable general maps
We give a different presentation of a recent bijection due to Chapuy and Dołe ̨ga for nonorientable bipartite quadrangulations and we extend it to the case of nonorientable general maps. This can be seen as a Bouttier–Di Francesco–Guitter-like generalization of the Cori–Vauquelin–Schaeffer bijection...
Saved in:
| Published in: | Discrete mathematics and theoretical computer science Vol. DMTCS Proceedings, 28th... |
|---|---|
| Main Author: | |
| Format: | Journal Article |
| Language: | English |
| Published: |
Discrete Mathematics & Theoretical Computer Science
22.04.2020
|
| Subjects: | |
| ISSN: | 1365-8050, 1365-8050 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | We give a different presentation of a recent bijection due to Chapuy and Dołe ̨ga for nonorientable bipartite quadrangulations and we extend it to the case of nonorientable general maps. This can be seen as a Bouttier–Di Francesco–Guitter-like generalization of the Cori–Vauquelin–Schaeffer bijection in the context of general nonori- entable surfaces. In the particular case of triangulations, the encoding objects take a particularly simple form and we recover a famous asymptotic enumeration formula found by Gao. |
|---|---|
| ISSN: | 1365-8050 1365-8050 |
| DOI: | 10.46298/dmtcs.6398 |