A bijection for nonorientable general maps
We give a different presentation of a recent bijection due to Chapuy and Dołe ̨ga for nonorientable bipartite quadrangulations and we extend it to the case of nonorientable general maps. This can be seen as a Bouttier–Di Francesco–Guitter-like generalization of the Cori–Vauquelin–Schaeffer bijection...
Uložené v:
| Vydané v: | Discrete mathematics and theoretical computer science Ročník DMTCS Proceedings, 28th... |
|---|---|
| Hlavný autor: | |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Discrete Mathematics & Theoretical Computer Science
22.04.2020
|
| Predmet: | |
| ISSN: | 1365-8050, 1365-8050 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Shrnutí: | We give a different presentation of a recent bijection due to Chapuy and Dołe ̨ga for nonorientable bipartite quadrangulations and we extend it to the case of nonorientable general maps. This can be seen as a Bouttier–Di Francesco–Guitter-like generalization of the Cori–Vauquelin–Schaeffer bijection in the context of general nonori- entable surfaces. In the particular case of triangulations, the encoding objects take a particularly simple form and we recover a famous asymptotic enumeration formula found by Gao. |
|---|---|
| ISSN: | 1365-8050 1365-8050 |
| DOI: | 10.46298/dmtcs.6398 |