The Flip Diameter of Rectangulations and Convex Subdivisions
We study the configuration space of rectangulations and convex subdivisions of $n$ points in the plane. It is shown that a sequence of $O(n\log n)$ elementary flip and rotate operations can transform any rectangulation to any other rectangulation on the same set of $n$ points. This bound is the best...
Uloženo v:
| Vydáno v: | Discrete mathematics and theoretical computer science Ročník 18 no. 3; číslo Combinatorics |
|---|---|
| Hlavní autoři: | , , , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Discrete Mathematics & Theoretical Computer Science
17.03.2016
|
| Témata: | |
| ISSN: | 1365-8050, 1365-8050 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | We study the configuration space of rectangulations and convex subdivisions
of $n$ points in the plane. It is shown that a sequence of $O(n\log n)$
elementary flip and rotate operations can transform any rectangulation to any
other rectangulation on the same set of $n$ points. This bound is the best
possible for some point sets, while $\Theta(n)$ operations are sufficient and
necessary for others. Some of our bounds generalize to convex subdivisions of
$n$ points in the plane. |
|---|---|
| AbstractList | We study the configuration space of rectangulations and convex subdivisions of $n$ points in the plane. It is shown that a sequence of $O(n\log n)$ elementary flip and rotate operations can transform any rectangulation to any other rectangulation on the same set of $n$ points. This bound is the best possible for some point sets, while $\Theta(n)$ operations are sufficient and necessary for others. Some of our bounds generalize to convex subdivisions of $n$ points in the plane. We study the configuration space of rectangulations and convex subdivisions of $n$ points in the plane. It is shown that a sequence of $O(n\log n)$ elementary flip and rotate operations can transform any rectangulation to any other rectangulation on the same set of $n$ points. This bound is the best possible for some point sets, while $\Theta(n)$ operations are sufficient and necessary for others. Some of our bounds generalize to convex subdivisions of $n$ points in the plane. |
| Author | Ackerman, Eyal Löffler, Maarten Allen, Michelle M. Barequet, Gill Mermelstein, Joshua Souvaine, Diane L. Tóth, Csaba D. |
| Author_xml | – sequence: 1 givenname: Eyal surname: Ackerman fullname: Ackerman, Eyal – sequence: 2 givenname: Michelle M. surname: Allen fullname: Allen, Michelle M. – sequence: 3 givenname: Gill surname: Barequet fullname: Barequet, Gill – sequence: 4 givenname: Maarten surname: Löffler fullname: Löffler, Maarten – sequence: 5 givenname: Joshua surname: Mermelstein fullname: Mermelstein, Joshua – sequence: 6 givenname: Diane L. surname: Souvaine fullname: Souvaine, Diane L. – sequence: 7 givenname: Csaba D. surname: Tóth fullname: Tóth, Csaba D. |
| BookMark | eNpNkMFKAzEURYNUsK1u_IKshanJTCaZgBupVgsFQes6vEleasp0UibTon9vbUXc3Hu5i7M4IzJoY4uEXHM2ETLX1a3b9DZNpJBnZMgLWWYVK9ng374go5TWjPFcCzUkd8sPpLMmbOlDgA322NHo6SvaHtrVroE-xDZRaB2dxnaPn_RtV7uwD-nnvyTnHpqEV789Ju-zx-X0OVu8PM2n94vM8kLJTAmecy689FYIUTtUzOZolaq0F4csa5XXqHxtSydL0BoKXmEFunTe-YIXYzI_cV2Etdl2YQPdl4kQzPGI3cpA1wfboAEE6ZnUDAontLRascpq7WpRq1JxPLBuTizbxZQ69H88zszRoTk6NAeHxTf9ZWah |
| ContentType | Journal Article |
| DBID | AAYXX CITATION DOA |
| DOI | 10.46298/dmtcs.646 |
| DatabaseName | CrossRef DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | CrossRef |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Mathematics Computer Science |
| EISSN | 1365-8050 |
| ExternalDocumentID | oai_doaj_org_article_aea6f0690a3d496c9708c99db4b7571e 10_46298_dmtcs_646 |
| GroupedDBID | -~9 .4S .DC 29G 2WC 5GY 5VS 8FE 8FG AAFWJ AAYXX ABDBF ABJCF ABUWG ACGFO ACIWK ACUHS ADBBV ADQAK AENEX AFFHD AFKRA AFPKN AIAGR ALMA_UNASSIGNED_HOLDINGS AMVHM ARCSS B0M BAIFH BBTPI BCNDV BENPR BFMQW BGLVJ BPHCQ CCPQU CITATION EAP EBS ECS EDO EJD EMK EPL EST ESX GROUPED_DOAJ HCIFZ I-F IAO IBB ICD ITC J9A KQ8 KWQ L6V M7S MK~ ML~ OK1 OVT P2P PHGZM PHGZT PIMPY PQGLB PQQKQ PROAC PTHSS PV9 REM RNS RSU RZL TR2 TUS XSB ~8M |
| ID | FETCH-LOGICAL-c1376-7412114f6fc444bde70c2ec7789f47785b72be7fbc5d65a99a318e8a95dfdf313 |
| IEDL.DBID | DOA |
| ISSN | 1365-8050 |
| IngestDate | Mon Nov 10 04:33:51 EST 2025 Sat Nov 29 02:48:22 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | Combinatorics |
| Language | English |
| License | https://arxiv.org/licenses/nonexclusive-distrib/1.0 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c1376-7412114f6fc444bde70c2ec7789f47785b72be7fbc5d65a99a318e8a95dfdf313 |
| OpenAccessLink | https://doaj.org/article/aea6f0690a3d496c9708c99db4b7571e |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_aea6f0690a3d496c9708c99db4b7571e crossref_primary_10_46298_dmtcs_646 |
| PublicationCentury | 2000 |
| PublicationDate | 2016-03-17 |
| PublicationDateYYYYMMDD | 2016-03-17 |
| PublicationDate_xml | – month: 03 year: 2016 text: 2016-03-17 day: 17 |
| PublicationDecade | 2010 |
| PublicationTitle | Discrete mathematics and theoretical computer science |
| PublicationYear | 2016 |
| Publisher | Discrete Mathematics & Theoretical Computer Science |
| Publisher_xml | – name: Discrete Mathematics & Theoretical Computer Science |
| SSID | ssj0012947 |
| Score | 1.9856263 |
| Snippet | We study the configuration space of rectangulations and convex subdivisions
of $n$ points in the plane. It is shown that a sequence of $O(n\log n)$
elementary... We study the configuration space of rectangulations and convex subdivisions of $n$ points in the plane. It is shown that a sequence of $O(n\log n)$ elementary... |
| SourceID | doaj crossref |
| SourceType | Open Website Index Database |
| SubjectTerms | computer science - computational geometry computer science - discrete mathematics mathematics - combinatorics |
| Title | The Flip Diameter of Rectangulations and Convex Subdivisions |
| URI | https://doaj.org/article/aea6f0690a3d496c9708c99db4b7571e |
| Volume | 18 no. 3 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1365-8050 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0012947 issn: 1365-8050 databaseCode: DOA dateStart: 19970101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVPQU databaseName: Continental Europe Database customDbUrl: eissn: 1365-8050 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0012947 issn: 1365-8050 databaseCode: BFMQW dateStart: 19970101 isFulltext: true titleUrlDefault: https://search.proquest.com/conteurope providerName: ProQuest – providerCode: PRVPQU databaseName: Engineering Database customDbUrl: eissn: 1365-8050 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0012947 issn: 1365-8050 databaseCode: M7S dateStart: 19970101 isFulltext: true titleUrlDefault: http://search.proquest.com providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1365-8050 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0012947 issn: 1365-8050 databaseCode: BENPR dateStart: 19970101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 1365-8050 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0012947 issn: 1365-8050 databaseCode: PIMPY dateStart: 19970101 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8NAEB5EPejBR1Wsj7Kg19hms0_wotWih5YeFOop7BMKNi1tFX--u0laevPiJYclTOCbzGt39huAW2xDzeCpT6RwIiHRFDU1OpHcaqK0YZL6ctgEHwzEaCSHG6O-Yk9YRQ9cAddWTjEf6XRVZolkRvKOMFIGSZpTnrrofTtcroqp-vwAS8IrMlLCsBRtO1maxR2Lae5G-Nlg6S_DSe8IDuo8ED1U3z-GLVc04HA1YwHVJteA_f6aV3VxAvdBq6j3OZ6hp7GaxE4WNPUopH7LuO1Yt7UhVVjUjd3kPyj4hXjhKm6JLU7hvff81n1J6vkHiUmD3Sch2IfyjHjmDSFEW8c7BjvDuZCehCfVHGvHvTbUMqqkVMFAnVCSWm99lmZnsF1MC3cOyGBmvLA4Uyy6RhXivsNYZ0G0oULZJtysYMlnFc1FHsqDEry8BC8P4DXhMSK2fiNSU5cLQWF5rbD8L4Vd_IeQS9gLmQuLzWApv4Lt5fzLXcOu-V6OF_NW-S-0YGf42h9-_AIWgr04 |
| linkProvider | Directory of Open Access Journals |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+Flip+Diameter+of+Rectangulations+and+Convex+Subdivisions&rft.jtitle=Discrete+mathematics+and+theoretical+computer+science&rft.au=Eyal+Ackerman&rft.au=Michelle+M.+Allen&rft.au=Gill+Barequet&rft.au=Maarten+L%C3%B6ffler&rft.date=2016-03-17&rft.pub=Discrete+Mathematics+%26+Theoretical+Computer+Science&rft.eissn=1365-8050&rft.volume=18+no.+3&rft.issue=Combinatorics&rft_id=info:doi/10.46298%2Fdmtcs.646&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_aea6f0690a3d496c9708c99db4b7571e |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1365-8050&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1365-8050&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1365-8050&client=summon |