The Flip Diameter of Rectangulations and Convex Subdivisions

We study the configuration space of rectangulations and convex subdivisions of $n$ points in the plane. It is shown that a sequence of $O(n\log n)$ elementary flip and rotate operations can transform any rectangulation to any other rectangulation on the same set of $n$ points. This bound is the best...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Discrete mathematics and theoretical computer science Ročník 18 no. 3; číslo Combinatorics
Hlavní autoři: Ackerman, Eyal, Allen, Michelle M., Barequet, Gill, Löffler, Maarten, Mermelstein, Joshua, Souvaine, Diane L., Tóth, Csaba D.
Médium: Journal Article
Jazyk:angličtina
Vydáno: Discrete Mathematics & Theoretical Computer Science 17.03.2016
Témata:
ISSN:1365-8050, 1365-8050
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:We study the configuration space of rectangulations and convex subdivisions of $n$ points in the plane. It is shown that a sequence of $O(n\log n)$ elementary flip and rotate operations can transform any rectangulation to any other rectangulation on the same set of $n$ points. This bound is the best possible for some point sets, while $\Theta(n)$ operations are sufficient and necessary for others. Some of our bounds generalize to convex subdivisions of $n$ points in the plane.
ISSN:1365-8050
1365-8050
DOI:10.46298/dmtcs.646