The Flip Diameter of Rectangulations and Convex Subdivisions
We study the configuration space of rectangulations and convex subdivisions of $n$ points in the plane. It is shown that a sequence of $O(n\log n)$ elementary flip and rotate operations can transform any rectangulation to any other rectangulation on the same set of $n$ points. This bound is the best...
Uloženo v:
| Vydáno v: | Discrete mathematics and theoretical computer science Ročník 18 no. 3; číslo Combinatorics |
|---|---|
| Hlavní autoři: | , , , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Discrete Mathematics & Theoretical Computer Science
17.03.2016
|
| Témata: | |
| ISSN: | 1365-8050, 1365-8050 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | We study the configuration space of rectangulations and convex subdivisions
of $n$ points in the plane. It is shown that a sequence of $O(n\log n)$
elementary flip and rotate operations can transform any rectangulation to any
other rectangulation on the same set of $n$ points. This bound is the best
possible for some point sets, while $\Theta(n)$ operations are sufficient and
necessary for others. Some of our bounds generalize to convex subdivisions of
$n$ points in the plane. |
|---|---|
| ISSN: | 1365-8050 1365-8050 |
| DOI: | 10.46298/dmtcs.646 |