The Flip Diameter of Rectangulations and Convex Subdivisions

We study the configuration space of rectangulations and convex subdivisions of $n$ points in the plane. It is shown that a sequence of $O(n\log n)$ elementary flip and rotate operations can transform any rectangulation to any other rectangulation on the same set of $n$ points. This bound is the best...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Discrete mathematics and theoretical computer science Ročník 18 no. 3; číslo Combinatorics
Hlavní autori: Ackerman, Eyal, Allen, Michelle M., Barequet, Gill, Löffler, Maarten, Mermelstein, Joshua, Souvaine, Diane L., Tóth, Csaba D.
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Discrete Mathematics & Theoretical Computer Science 17.03.2016
Predmet:
ISSN:1365-8050, 1365-8050
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract We study the configuration space of rectangulations and convex subdivisions of $n$ points in the plane. It is shown that a sequence of $O(n\log n)$ elementary flip and rotate operations can transform any rectangulation to any other rectangulation on the same set of $n$ points. This bound is the best possible for some point sets, while $\Theta(n)$ operations are sufficient and necessary for others. Some of our bounds generalize to convex subdivisions of $n$ points in the plane.
AbstractList We study the configuration space of rectangulations and convex subdivisions of $n$ points in the plane. It is shown that a sequence of $O(n\log n)$ elementary flip and rotate operations can transform any rectangulation to any other rectangulation on the same set of $n$ points. This bound is the best possible for some point sets, while $\Theta(n)$ operations are sufficient and necessary for others. Some of our bounds generalize to convex subdivisions of $n$ points in the plane.
We study the configuration space of rectangulations and convex subdivisions of $n$ points in the plane. It is shown that a sequence of $O(n\log n)$ elementary flip and rotate operations can transform any rectangulation to any other rectangulation on the same set of $n$ points. This bound is the best possible for some point sets, while $\Theta(n)$ operations are sufficient and necessary for others. Some of our bounds generalize to convex subdivisions of $n$ points in the plane.
Author Ackerman, Eyal
Löffler, Maarten
Allen, Michelle M.
Barequet, Gill
Mermelstein, Joshua
Souvaine, Diane L.
Tóth, Csaba D.
Author_xml – sequence: 1
  givenname: Eyal
  surname: Ackerman
  fullname: Ackerman, Eyal
– sequence: 2
  givenname: Michelle M.
  surname: Allen
  fullname: Allen, Michelle M.
– sequence: 3
  givenname: Gill
  surname: Barequet
  fullname: Barequet, Gill
– sequence: 4
  givenname: Maarten
  surname: Löffler
  fullname: Löffler, Maarten
– sequence: 5
  givenname: Joshua
  surname: Mermelstein
  fullname: Mermelstein, Joshua
– sequence: 6
  givenname: Diane L.
  surname: Souvaine
  fullname: Souvaine, Diane L.
– sequence: 7
  givenname: Csaba D.
  surname: Tóth
  fullname: Tóth, Csaba D.
BookMark eNpNkMFKAzEURYNUsK1u_IKshanJTCaZgBupVgsFQes6vEleasp0UibTon9vbUXc3Hu5i7M4IzJoY4uEXHM2ETLX1a3b9DZNpJBnZMgLWWYVK9ng374go5TWjPFcCzUkd8sPpLMmbOlDgA322NHo6SvaHtrVroE-xDZRaB2dxnaPn_RtV7uwD-nnvyTnHpqEV789Ju-zx-X0OVu8PM2n94vM8kLJTAmecy689FYIUTtUzOZolaq0F4csa5XXqHxtSydL0BoKXmEFunTe-YIXYzI_cV2Etdl2YQPdl4kQzPGI3cpA1wfboAEE6ZnUDAontLRascpq7WpRq1JxPLBuTizbxZQ69H88zszRoTk6NAeHxTf9ZWah
ContentType Journal Article
DBID AAYXX
CITATION
DOA
DOI 10.46298/dmtcs.646
DatabaseName CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList
CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
Computer Science
EISSN 1365-8050
ExternalDocumentID oai_doaj_org_article_aea6f0690a3d496c9708c99db4b7571e
10_46298_dmtcs_646
GroupedDBID -~9
.4S
.DC
29G
2WC
5GY
5VS
8FE
8FG
AAFWJ
AAYXX
ABDBF
ABJCF
ABUWG
ACGFO
ACIWK
ACUHS
ADBBV
ADQAK
AENEX
AFFHD
AFKRA
AFPKN
AIAGR
ALMA_UNASSIGNED_HOLDINGS
AMVHM
ARCSS
B0M
BAIFH
BBTPI
BCNDV
BENPR
BFMQW
BGLVJ
BPHCQ
CCPQU
CITATION
EAP
EBS
ECS
EDO
EJD
EMK
EPL
EST
ESX
GROUPED_DOAJ
HCIFZ
I-F
IAO
IBB
ICD
ITC
J9A
KQ8
KWQ
L6V
M7S
MK~
ML~
OK1
OVT
P2P
PHGZM
PHGZT
PIMPY
PQGLB
PQQKQ
PROAC
PTHSS
PV9
REM
RNS
RSU
RZL
TR2
TUS
XSB
~8M
ID FETCH-LOGICAL-c1376-7412114f6fc444bde70c2ec7789f47785b72be7fbc5d65a99a318e8a95dfdf313
IEDL.DBID DOA
ISSN 1365-8050
IngestDate Mon Nov 10 04:33:51 EST 2025
Sat Nov 29 02:48:22 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue Combinatorics
Language English
License https://arxiv.org/licenses/nonexclusive-distrib/1.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c1376-7412114f6fc444bde70c2ec7789f47785b72be7fbc5d65a99a318e8a95dfdf313
OpenAccessLink https://doaj.org/article/aea6f0690a3d496c9708c99db4b7571e
ParticipantIDs doaj_primary_oai_doaj_org_article_aea6f0690a3d496c9708c99db4b7571e
crossref_primary_10_46298_dmtcs_646
PublicationCentury 2000
PublicationDate 2016-03-17
PublicationDateYYYYMMDD 2016-03-17
PublicationDate_xml – month: 03
  year: 2016
  text: 2016-03-17
  day: 17
PublicationDecade 2010
PublicationTitle Discrete mathematics and theoretical computer science
PublicationYear 2016
Publisher Discrete Mathematics & Theoretical Computer Science
Publisher_xml – name: Discrete Mathematics & Theoretical Computer Science
SSID ssj0012947
Score 1.9857333
Snippet We study the configuration space of rectangulations and convex subdivisions of $n$ points in the plane. It is shown that a sequence of $O(n\log n)$ elementary...
We study the configuration space of rectangulations and convex subdivisions of $n$ points in the plane. It is shown that a sequence of $O(n\log n)$ elementary...
SourceID doaj
crossref
SourceType Open Website
Index Database
SubjectTerms computer science - computational geometry
computer science - discrete mathematics
mathematics - combinatorics
Title The Flip Diameter of Rectangulations and Convex Subdivisions
URI https://doaj.org/article/aea6f0690a3d496c9708c99db4b7571e
Volume 18 no. 3
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1365-8050
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0012947
  issn: 1365-8050
  databaseCode: DOA
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVPQU
  databaseName: Continental Europe Database
  customDbUrl:
  eissn: 1365-8050
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0012947
  issn: 1365-8050
  databaseCode: BFMQW
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/conteurope
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Engineering Database
  customDbUrl:
  eissn: 1365-8050
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0012947
  issn: 1365-8050
  databaseCode: M7S
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central Database Suite (ProQuest)
  customDbUrl:
  eissn: 1365-8050
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0012947
  issn: 1365-8050
  databaseCode: BENPR
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Publicly Available Content Database
  customDbUrl:
  eissn: 1365-8050
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0012947
  issn: 1365-8050
  databaseCode: PIMPY
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3LSsNAFB2kutCFj6pYH2VAt7F5zCMDbrRaFGzpQqGuwjzuQMGmpYni5zuTpKU7N26yGEIC5-TOnDtzcy5CN1RLSFz-H4CiLCBCEhdSygk5wgyE4CjXlc_sKx-N0slEjDdaffmasNoeuAauJ0Ey6-10ZWKIYFrwMNVCGEUUpzwCP_uGXKySqeb8IBaE12akhMUi7ZlZqYtb5mXuxvKz4dJfLSeDQ7Tf6EB8X7__CG1B3kYHqx4LuAm5Ntobrn1Vi2N051jFg8_pAj9O5cxXsuC5xU76lX7bsSlrwzI3uO-ryX-wmxf8D1d-S6w4Qe-Dp7f-c9D0Pwh05OLe4eX914hlVhNClAEe6hg056mwxF2p4rECbpWmhlEphHQBCqkU1Fhjkyg5Ra18nsMZwkksYyNoaH1bDTBaRlpKZanWkY4EQAddr2DJFrXNRebSgwq8rAIvc-B10INHbH2Ht6auBhxhWUNY9hdh5__xkAu065QL88VgEb9ErXL5BVdoR3-X02LZrb6FLtoevwzHH7-a9L14
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+Flip+Diameter+of+Rectangulations+and+Convex+Subdivisions&rft.jtitle=Discrete+mathematics+and+theoretical+computer+science&rft.au=Ackerman%2C+Eyal&rft.au=Allen%2C+Michelle+M.&rft.au=Barequet%2C+Gill&rft.au=L%C3%B6ffler%2C+Maarten&rft.date=2016-03-17&rft.issn=1365-8050&rft.eissn=1365-8050&rft.volume=18+no.+3&rft.issue=Combinatorics&rft_id=info:doi/10.46298%2Fdmtcs.646&rft.externalDBID=n%2Fa&rft.externalDocID=10_46298_dmtcs_646
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1365-8050&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1365-8050&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1365-8050&client=summon