A Bi-Level Multi-Objective System for Renewable Energy Self-Consumption: A Resident-Aware Approach to Leveraging Energy Flexibility

The efficient exploitation of renewable energy sources is crucial for addressing the global energy crisis and increase in CO2 emissions. Energy management system aggregators, functioning as nonprofit cooperatives within energy communities, manage renewable energy resources and incentivize residents...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on evolutionary computation p. 1
Main Authors: Papakyriakou, Thalis, Pamboris, Andreas, Konstantinidis, Andreas
Format: Journal Article
Language:English
Published: IEEE 2025
Subjects:
ISSN:1089-778X, 1941-0026
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract The efficient exploitation of renewable energy sources is crucial for addressing the global energy crisis and increase in CO2 emissions. Energy management system aggregators, functioning as nonprofit cooperatives within energy communities, manage renewable energy resources and incentivize residents towards self-consumption through dynamic, cost-attractive pricing schemes, receiving subsidies and long-term contracts as reward. This interaction between aggregator and residents is typically modeled using bi-level optimization frameworks, however, research studies often ignore the role of aggregators as self-consumption catalysts and the conflicting nature of the residents' objectives. Moreover, lack of cooperation between the decision levels results in inflexible decision making when prioritizing between the respective objectives. This paper defines and formulates a bi-level multi-objective optimization problem for optimizing self-consumption in energy communities, while considering the residents' welfare by maximizing satisfaction of their appliance-scheduling preferences and minimizing energy costs. We introduce the Bi-level Multi-Objective Energy Management System II (BiMO-EMS-II), composed of an Adaptive Population Transfer strategy, a Uniform Partially Mapped Crossover and a Decision Making heuristic with Cooperation. Our experimental evaluation has shown that BiMO-EMS-II simultaneously offers near-optimal self-consumption at the aggregator level and a high-quality trade-off between the conflicting objectives at the resident level, subject to different objective prioritization and decision-making assumptions.
AbstractList The efficient exploitation of renewable energy sources is crucial for addressing the global energy crisis and increase in CO2 emissions. Energy management system aggregators, functioning as nonprofit cooperatives within energy communities, manage renewable energy resources and incentivize residents towards self-consumption through dynamic, cost-attractive pricing schemes, receiving subsidies and long-term contracts as reward. This interaction between aggregator and residents is typically modeled using bi-level optimization frameworks, however, research studies often ignore the role of aggregators as self-consumption catalysts and the conflicting nature of the residents' objectives. Moreover, lack of cooperation between the decision levels results in inflexible decision making when prioritizing between the respective objectives. This paper defines and formulates a bi-level multi-objective optimization problem for optimizing self-consumption in energy communities, while considering the residents' welfare by maximizing satisfaction of their appliance-scheduling preferences and minimizing energy costs. We introduce the Bi-level Multi-Objective Energy Management System II (BiMO-EMS-II), composed of an Adaptive Population Transfer strategy, a Uniform Partially Mapped Crossover and a Decision Making heuristic with Cooperation. Our experimental evaluation has shown that BiMO-EMS-II simultaneously offers near-optimal self-consumption at the aggregator level and a high-quality trade-off between the conflicting objectives at the resident level, subject to different objective prioritization and decision-making assumptions.
Author Pamboris, Andreas
Konstantinidis, Andreas
Papakyriakou, Thalis
Author_xml – sequence: 1
  givenname: Thalis
  orcidid: 0009-0008-0176-1713
  surname: Papakyriakou
  fullname: Papakyriakou, Thalis
– sequence: 2
  givenname: Andreas
  orcidid: 0000-0002-4877-6663
  surname: Pamboris
  fullname: Pamboris, Andreas
– sequence: 3
  givenname: Andreas
  orcidid: 0000-0001-5370-8692
  surname: Konstantinidis
  fullname: Konstantinidis, Andreas
BookMark eNpFkMtKw0AYhQepYFt9AMHFvMDUmUkmF3cxtCpUCraKuzCXP3VKmoRJ2pq1L25DK67OWZwLfCM0KKsSELpldMIYje9X0490wikXE0_EEfeCCzRksc8IpTwYHD2NYhKG0ecVGjXNhlLmCxYP0U-CHy2Zwx4K_LorWksWagO6tXvAy65pYYvzyuE3KOEgVQF4WoJbd3gJRU7Sqmx227q1VfmAk2OosQbKliQH6QAnde0qqb9wW-H-wMm1Ldd_A7MCvq2yhW27a3SZy6KBm7OO0ftsukqfyXzx9JImc6KZJ1oCkVIB50YYnwutY5YHIjDScKNlBLmIdeBJyZgMcgGRUEKbMFc0MEyB9LXxxoiddrWrmsZBntXObqXrMkaznmLWU8x6itmZ4rFzd-pYAPjPM8Z9HnLvFxcAc3A
CODEN ITEVF5
ContentType Journal Article
DBID 97E
RIA
RIE
AAYXX
CITATION
DOI 10.1109/TEVC.2025.3598236
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE/IET Electronic Library (IEL) (UW System Shared)
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE/IET Electronic Library (IEL) (UW System Shared)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1941-0026
EndPage 1
ExternalDocumentID 10_1109_TEVC_2025_3598236
11124272
Genre orig-research
GroupedDBID -~X
.DC
0R~
29I
4.4
5GY
6IF
6IK
6IL
6IN
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABJNI
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ADZIZ
AENEX
AGQYO
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CHZPO
CS3
EBS
HZ~
IEGSK
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
PQQKQ
RIA
RIE
RIL
RNS
TN5
5VS
AAYXX
AETIX
AGSQL
AI.
AIBXA
ALLEH
CITATION
EJD
H~9
IFJZH
VH1
ID FETCH-LOGICAL-c135t-e8bb622d5d425cc91f656dad2dca8ef59c63aa11a6f5e85b5cd7fb06d1bea4cd3
IEDL.DBID RIE
ISSN 1089-778X
IngestDate Sat Nov 29 07:37:51 EST 2025
Wed Aug 20 06:20:37 EDT 2025
IsPeerReviewed true
IsScholarly true
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c135t-e8bb622d5d425cc91f656dad2dca8ef59c63aa11a6f5e85b5cd7fb06d1bea4cd3
ORCID 0009-0008-0176-1713
0000-0002-4877-6663
0000-0001-5370-8692
PageCount 1
ParticipantIDs crossref_primary_10_1109_TEVC_2025_3598236
ieee_primary_11124272
PublicationCentury 2000
PublicationDate 2025-00-00
PublicationDateYYYYMMDD 2025-01-01
PublicationDate_xml – year: 2025
  text: 2025-00-00
PublicationDecade 2020
PublicationTitle IEEE transactions on evolutionary computation
PublicationTitleAbbrev TEVC
PublicationYear 2025
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0014519
Score 2.4557023
Snippet The efficient exploitation of renewable energy sources is crucial for addressing the global energy crisis and increase in CO2 emissions. Energy management...
SourceID crossref
ieee
SourceType Index Database
Publisher
StartPage 1
SubjectTerms bi-level optimization
Computational modeling
Costs
Decision making
Energy management systems
Evolutionary computation
evolutionary multi-objective optimization
evolutionary transfer optimization
Load modeling
multi-criteria decision making
Optimization
Production
Renewable energy sources
self-consumption
Stakeholders
Title A Bi-Level Multi-Objective System for Renewable Energy Self-Consumption: A Resident-Aware Approach to Leveraging Energy Flexibility
URI https://ieeexplore.ieee.org/document/11124272
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE/IET Electronic Library (IEL) (UW System Shared)
  customDbUrl:
  eissn: 1941-0026
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014519
  issn: 1089-778X
  databaseCode: RIE
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELagYoCBQimivOSBCclt4iR2whaqVgxVQVCqbpGfEgilKKRUzPxxbCelXRjYosh5SJ99vvPd9x0AVzoJQxwyhTyiKDLxl0Bc6BjxmAYBw5gTx0qbjuh4HM9myUNNVndcGKWUKz5TXXvpcvlyLhb2qKxn1qXZUaixuNuUkoqs9ZsysDopVTV9YlzGeFanMH0v6U0G074JBXHUdXp1To55vQltdFVxm8qw-c_fOQD7tfcI0wruQ7Cl8hZorjozwHqhtsDehszgEfhO4e0LGtnyIOgIt-iev1aGDlaK5dC4rvDRmL2lZVLBgSMEwif1plHfcTSdYbmBqRlk-3vmJUqXrFAwrSXJYTmH9gOFa3q0esHQqm266tuvNngeDib9O1Q3X0DCD6ISqZhzgrGMpFnVQiS-Np6fZBJLwWKlo0SQgDHfZ0RHKo54JCTV3CPS54qFQgbHoJHPc3UCoJYcayp8QYx3xiVm1PbICgJPmNiGEdYB1ys0svdKYyNzsYmXZBa6zEKX1dB1QNsisR5Yg3D6x_0zsGsfr05NzkGjLBbqAuyIz_Llo7h0U-gHU-vGxg
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NS8MwFA8yBfXgdCrOzxw8Cdna9NtbHRsT6xSdY7eST5hIJ7VzePYfN0k7t4sHb6WEpPDre3kveb_fA-BSRq6LXSKQ5YsAqfyLIcpkiGgYOA7BmPqGlTZKgsEgHI-jx4qsbrgwQghTfCZa-tHc5fMpm-mjsrayS7WjBMrjrntqCauka_1eGmillLKePlJBYziuLjFtK2oPu6OOSgax1zKKdUaQebkNrfRVMdtKr_7PD9oFO1X8COMS8D2wJrIGqC96M8DKVBtge0VocB98x_BmghJdIAQN5RY90NfS1cFSsxyq4BU-Kcc311wq2DWUQPgs3iTqGJamcS3XMFaDdIfPrEDxnOQCxpUoOSymUC-Qm7ZHiwl6Wm_T1N9-HYCXXnfY6aOq_QJituMVSISU-hhzjyu7ZiyypYr9OOGYMxIK6UXMdwixbeJLT4Qe9RgPJLV8blNBXMadQ1DLppk4AlByimXAbOar-IxyTALdJctxLKayG-KTJrhaoJG-lyobqclOrCjV0KUaurSCrgkONBLLgRUIx3-8vwCb_eF9kia3g7sTsKWnKs9QTkGtyGfiDGywz2LykZ-b3-kH0oLKDQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Bi-Level+Multi-Objective+System+for+Renewable+Energy+Self-Consumption%3A+A+Resident-Aware+Approach+to+Leveraging+Energy+Flexibility&rft.jtitle=IEEE+transactions+on+evolutionary+computation&rft.au=Papakyriakou%2C+Thalis&rft.au=Pamboris%2C+Andreas&rft.au=Konstantinidis%2C+Andreas&rft.date=2025&rft.issn=1089-778X&rft.eissn=1941-0026&rft.spage=1&rft.epage=1&rft_id=info:doi/10.1109%2FTEVC.2025.3598236&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TEVC_2025_3598236
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1089-778X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1089-778X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1089-778X&client=summon