Evolving Multi-Branch Attention Convolutional Neural Networks for Online RIS Configuration
In this paper, we consider the problem of jointly controlling the configuration of a Reconfigurable Intelligent Surface (RIS) with unit elements of discrete responses and a codebook-based transmit precoder in RIS-empowered Multiple-Input Single-Output (MISO) communication systems. The adjustable ele...
Uložené v:
| Vydané v: | IEEE transactions on cognitive communications and networking s. 1 |
|---|---|
| Hlavní autori: | , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
IEEE
2025
|
| Predmet: | |
| ISSN: | 2332-7731, 2332-7731 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Shrnutí: | In this paper, we consider the problem of jointly controlling the configuration of a Reconfigurable Intelligent Surface (RIS) with unit elements of discrete responses and a codebook-based transmit precoder in RIS-empowered Multiple-Input Single-Output (MISO) communication systems. The adjustable elements of the RIS and the precoding vector need to be jointly modified in real time to account for rapid changes in the wireless channels, making the application of complicated discrete optimization algorithms impractical. We present a novel Multi-Branch Attention Convolutional Neural Network (MBACNN) architecture for this design objective which is optimized using NeuroEvolution (NE), leveraging its capability to effectively tackle the non-differentiable problem arising from the discrete phase states of the RIS elements. The channel matrices of all involved links are first passed to separate self-attention layers to obtain initial embeddings, which are then concatenated and passed to a convolutional network for spatial feature extraction, before being fed to a per-element multi-layered perceptron for the final RIS phase configuration calculation. Our MBACNN architecture is then extended to multi-RIS-empowered MISO communication systems, and a novel NE-based optimization approach for the online distributed configuration of multiple RISs is presented. The superiority of the proposed single-RIS approach over both learning-based and classical discrete optimization benchmarks is showcased via extensive numerical evaluations over both stochastic and geometrical channel models. It is also demonstrated that the proposed distributed multi-RIS approach outperforms both distributed controllers with feedforward neural networks and fully centralized ones. |
|---|---|
| ISSN: | 2332-7731 2332-7731 |
| DOI: | 10.1109/TCCN.2025.3552623 |