An Improved Prediction Algorithm for Noise of Transformer Considering Material Parameter Uncertainty

This study proposes a rapid transformer noise prediction method to quantify the propagation of electrical steel material uncertainties in transformer systems. To characterize uncertainties in silicon steel, stochastic models of magnetization and magnetostriction behaviors are developed using vine co...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:IEEE transactions on magnetics s. 1
Hlavní autori: Yang, Fan, Xia, Yisha, Wang, Jiawei, Wang, Pengbo, Jiang, Hui
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: IEEE 2025
Predmet:
ISSN:0018-9464, 1941-0069
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract This study proposes a rapid transformer noise prediction method to quantify the propagation of electrical steel material uncertainties in transformer systems. To characterize uncertainties in silicon steel, stochastic models of magnetization and magnetostriction behaviors are developed using vine copula theory, generating correlated sample curves across flux densities ranging from 0.1-1.9 T. To mitigate computational costs, an adaptive differential evolution-optimized backpropagation neural network (ADE-BP) is introduced for transformer noise analysis. The proposed method is implemented to the finite element model of a transformer to validate its effectiveness and accuracy. Numerical results reveal a 12.7% probability of exceeding permissible noise thresholds due to variations in magnetic parameters, thereby underscoring the necessity for topology optimization in high-efficiency, low-noise transformer design methodologies.
AbstractList This study proposes a rapid transformer noise prediction method to quantify the propagation of electrical steel material uncertainties in transformer systems. To characterize uncertainties in silicon steel, stochastic models of magnetization and magnetostriction behaviors are developed using vine copula theory, generating correlated sample curves across flux densities ranging from 0.1-1.9 T. To mitigate computational costs, an adaptive differential evolution-optimized backpropagation neural network (ADE-BP) is introduced for transformer noise analysis. The proposed method is implemented to the finite element model of a transformer to validate its effectiveness and accuracy. Numerical results reveal a 12.7% probability of exceeding permissible noise thresholds due to variations in magnetic parameters, thereby underscoring the necessity for topology optimization in high-efficiency, low-noise transformer design methodologies.
Author Wang, Jiawei
Wang, Pengbo
Yang, Fan
Jiang, Hui
Xia, Yisha
Author_xml – sequence: 1
  givenname: Fan
  orcidid: 0000-0003-4831-2241
  surname: Yang
  fullname: Yang, Fan
  organization: School of Electrical Engineering, State Key Laboratory of Power Transmission Equipment Technology, Chongqing University, Chongqing, China
– sequence: 2
  givenname: Yisha
  orcidid: 0009-0002-3770-3917
  surname: Xia
  fullname: Xia, Yisha
  email: xiayisha@cqu.edu.cn
  organization: School of Electrical Engineering, State Key Laboratory of Power Transmission Equipment Technology, Chongqing University, Chongqing, China
– sequence: 3
  givenname: Jiawei
  orcidid: 0000-0003-1526-110X
  surname: Wang
  fullname: Wang, Jiawei
  organization: School of Electrical Engineering, State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong University, Xi'an, China
– sequence: 4
  givenname: Pengbo
  orcidid: 0000-0003-3262-1621
  surname: Wang
  fullname: Wang, Pengbo
  organization: School of Electrical Engineering, State Key Laboratory of Power Transmission Equipment Technology, Chongqing University, Chongqing, China
– sequence: 5
  givenname: Hui
  orcidid: 0000-0002-7516-446X
  surname: Jiang
  fullname: Jiang, Hui
  organization: School of Electrical Engineering, State Key Laboratory of Power Transmission Equipment Technology, Chongqing University, Chongqing, China
BookMark eNpFkEFrAjEUhEOxULX9AYUe8gfW5mWz2c1xkVYFbT3oeUmzLzbFTSRZCv77rij09GaGmXf4JmTkg0dCnoHNAJh63W3qxYwzXsxyyaXK-R0ZgxKQMSbViIwZgypTQooHMknpZ7CiADYmbe3pqjvF8Ist3UZsneld8LQ-HkJ0_XdHbYj0I7iENFi6i9qnIekw0nnwybUYnT_Qje4HoY90q6PucDB07w3GXjvfnx_JvdXHhE-3OyX797fdfJmtPxereb3ODORFnwGzJbdamUpYrUtbWCVtKTRDwYwqmGEKclkVX1JUimMFbcUNqqJFU5ZS6XxK4PrXxJBSRNucout0PDfAmgum5oKpuWBqbpiGzct14xDxvw-ccwl5_gcaFWdC
CODEN IEMGAQ
ContentType Journal Article
DBID 97E
RIA
RIE
AAYXX
CITATION
DOI 10.1109/TMAG.2025.3626932
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005-present
IEEE All-Society Periodicals Package (ASPP) 1998-Present
IEEE/IET Electronic Library (IEL) (UW System Shared)
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE/IET Electronic Library (IEL) (UW System Shared)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1941-0069
EndPage 1
ExternalDocumentID 10_1109_TMAG_2025_3626932
11222613
Genre orig-research
GrantInformation_xml – fundername: National Natural Science Foundation Joint Fund
  grantid: U23B20135
– fundername: National Key Research and Development Program of China
  grantid: 2025ZD0808300
  funderid: 10.13039/501100012166
GroupedDBID -~X
0R~
29I
4.4
5GY
6IK
97E
AAJGR
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
AENEX
AGQYO
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
F5P
HZ~
IFIPE
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
RIA
RIE
RNS
TN5
TWZ
5VS
AAYXX
AETIX
AGSQL
AI.
AIBXA
ALLEH
CITATION
EJD
H~9
IAAWW
IBMZZ
ICLAB
IFJZH
VH1
VJK
XXG
ID FETCH-LOGICAL-c135t-10f72fa9c84faa7f5f96f74a0e40c950c0913685b64892e81d82ce95dec7769a3
IEDL.DBID RIE
ISSN 0018-9464
IngestDate Sat Nov 29 06:59:20 EST 2025
Wed Nov 05 07:09:20 EST 2025
IsPeerReviewed false
IsScholarly true
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c135t-10f72fa9c84faa7f5f96f74a0e40c950c0913685b64892e81d82ce95dec7769a3
ORCID 0000-0002-7516-446X
0009-0002-3770-3917
0000-0003-3262-1621
0000-0003-1526-110X
0000-0003-4831-2241
PageCount 1
ParticipantIDs ieee_primary_11222613
crossref_primary_10_1109_TMAG_2025_3626932
PublicationCentury 2000
PublicationDate 2025-00-00
PublicationDateYYYYMMDD 2025-01-01
PublicationDate_xml – year: 2025
  text: 2025-00-00
PublicationDecade 2020
PublicationTitle IEEE transactions on magnetics
PublicationTitleAbbrev TMAG
PublicationYear 2025
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0014510
Score 2.441587
Snippet This study proposes a rapid transformer noise prediction method to quantify the propagation of electrical steel material uncertainties in transformer systems....
SourceID crossref
ieee
SourceType Index Database
Publisher
StartPage 1
SubjectTerms Adaptation models
backpropagation algorithms
Computational modeling
Magnetic material
Magnetization
Magnetostriction
Noise
noise level
Power transformer insulation
Stochastic processes
stochastic theory
Transformers
Uncertainty
Vectors
Title An Improved Prediction Algorithm for Noise of Transformer Considering Material Parameter Uncertainty
URI https://ieeexplore.ieee.org/document/11222613
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE/IET Electronic Library (IEL) (UW System Shared)
  customDbUrl:
  eissn: 1941-0069
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014510
  issn: 0018-9464
  databaseCode: RIE
  dateStart: 19650101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NT4MwGG500UQPfswZ51d68GTCVqCF9kiM04NbdtiS3UhX3uoSBcOYif_etjCdBw_egBRC3qfQp-_H8yJ0I0OqNWXcIxqYR2UGHmeQeebbMhjDXBFwIq5P8WjEZzMxborVXS0MALjkM-jZQxfLzwq1sq6yvuEGhi3YHrXbcRzVxVrfIQPK_LrexOe2bzxtQpg-Ef3JMHkwW8GA9az4igiDX4vQRlcVt6gMDv_5OkfooGGPOKnhPkZbkLfR_oamYBvtupxOtTxBWZLj2mcAGR6XNiJjUcDJ63NRLqqXN2wIKx4ViyXgQuPJmsJCiddtPM0T8VBWbpbisbSJXOYET81McZkE1WcHTQf3k7tHr2mq4Ck_ZJX57eo40FIoTrWUsWZaRDqmkgAlSjCirFBoxNk8olwEYOgsDxQIloEyNhcyPEWtvMjhDGEVxVb-TgOZG-sbaqGdvIshgTSeyyDsotu1ldP3WjsjdXsOIlILSWohSRtIuqhjLfwzsDHu-R_XL9Cevb32hlyiVlWu4ArtqI9qsSyv3dT4AvozttA
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV09T8MwELVQAQEDH6WI8umBCSmtk9hJPFaIUkRbdWilbpHjnKESNChNkfj32E4KZWBgSyLLiu5d4mff3TuEboRPlaIscogC5lCRghMxSB39bWmMIZEErIhrPxwOo-mUj6pidVsLAwA2-Qxa5tLG8tNMLs1RWVtzA80WTI_aTUapR8pyre-gAWVuWXHiRqZzPK2CmC7h7fGg86A3gx5rGfkV7nu_lqG1vip2Weke_POFDtF-xR9xpwT8CG3AvI721lQF62jbZnXKxTFKO3NcnhpAike5ickYHHDn9TnLZ8XLG9aUFQ-z2QJwpvB4RWIhx6tGnnpGPBCF9VM8EiaVS9_gifYVm0tQfDbQpHs_vus5VVsFR7o-K_SPV4WeElxGVAkRKqZ4oEIqCFAiOSPSSIUGEUsCGnEPNKGNPAmcpSDDMODCP0G1eTaHU4RlEBoBPAUk0dbX5EJZgRdNA2mYCM9votuVleP3Uj0jtrsOwmMDSWwgiStImqhhLPwzsDLu2R_Pr9FObzzox_3H4dM52jVTlWcjF6hW5Eu4RFvyo5gt8ivrJl-rtLoX
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+Improved+Prediction+Algorithm+for+Noise+of+Transformer+Considering+Material+Parameter+Uncertainty&rft.jtitle=IEEE+transactions+on+magnetics&rft.au=Yang%2C+Fan&rft.au=Xia%2C+Yisha&rft.au=Wang%2C+Jiawei&rft.au=Wang%2C+Pengbo&rft.date=2025&rft.pub=IEEE&rft.issn=0018-9464&rft.spage=1&rft.epage=1&rft_id=info:doi/10.1109%2FTMAG.2025.3626932&rft.externalDocID=11222613
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9464&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9464&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9464&client=summon