An Improved Prediction Algorithm for Noise of Transformer Considering Material Parameter Uncertainty
This study proposes a rapid transformer noise prediction method to quantify the propagation of electrical steel material uncertainties in transformer systems. To characterize uncertainties in silicon steel, stochastic models of magnetization and magnetostriction behaviors are developed using vine co...
Uložené v:
| Vydané v: | IEEE transactions on magnetics s. 1 |
|---|---|
| Hlavní autori: | , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
IEEE
2025
|
| Predmet: | |
| ISSN: | 0018-9464, 1941-0069 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | This study proposes a rapid transformer noise prediction method to quantify the propagation of electrical steel material uncertainties in transformer systems. To characterize uncertainties in silicon steel, stochastic models of magnetization and magnetostriction behaviors are developed using vine copula theory, generating correlated sample curves across flux densities ranging from 0.1-1.9 T. To mitigate computational costs, an adaptive differential evolution-optimized backpropagation neural network (ADE-BP) is introduced for transformer noise analysis. The proposed method is implemented to the finite element model of a transformer to validate its effectiveness and accuracy. Numerical results reveal a 12.7% probability of exceeding permissible noise thresholds due to variations in magnetic parameters, thereby underscoring the necessity for topology optimization in high-efficiency, low-noise transformer design methodologies. |
|---|---|
| AbstractList | This study proposes a rapid transformer noise prediction method to quantify the propagation of electrical steel material uncertainties in transformer systems. To characterize uncertainties in silicon steel, stochastic models of magnetization and magnetostriction behaviors are developed using vine copula theory, generating correlated sample curves across flux densities ranging from 0.1-1.9 T. To mitigate computational costs, an adaptive differential evolution-optimized backpropagation neural network (ADE-BP) is introduced for transformer noise analysis. The proposed method is implemented to the finite element model of a transformer to validate its effectiveness and accuracy. Numerical results reveal a 12.7% probability of exceeding permissible noise thresholds due to variations in magnetic parameters, thereby underscoring the necessity for topology optimization in high-efficiency, low-noise transformer design methodologies. |
| Author | Wang, Jiawei Wang, Pengbo Yang, Fan Jiang, Hui Xia, Yisha |
| Author_xml | – sequence: 1 givenname: Fan orcidid: 0000-0003-4831-2241 surname: Yang fullname: Yang, Fan organization: School of Electrical Engineering, State Key Laboratory of Power Transmission Equipment Technology, Chongqing University, Chongqing, China – sequence: 2 givenname: Yisha orcidid: 0009-0002-3770-3917 surname: Xia fullname: Xia, Yisha email: xiayisha@cqu.edu.cn organization: School of Electrical Engineering, State Key Laboratory of Power Transmission Equipment Technology, Chongqing University, Chongqing, China – sequence: 3 givenname: Jiawei orcidid: 0000-0003-1526-110X surname: Wang fullname: Wang, Jiawei organization: School of Electrical Engineering, State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong University, Xi'an, China – sequence: 4 givenname: Pengbo orcidid: 0000-0003-3262-1621 surname: Wang fullname: Wang, Pengbo organization: School of Electrical Engineering, State Key Laboratory of Power Transmission Equipment Technology, Chongqing University, Chongqing, China – sequence: 5 givenname: Hui orcidid: 0000-0002-7516-446X surname: Jiang fullname: Jiang, Hui organization: School of Electrical Engineering, State Key Laboratory of Power Transmission Equipment Technology, Chongqing University, Chongqing, China |
| BookMark | eNpFkEFrAjEUhEOxULX9AYUe8gfW5mWz2c1xkVYFbT3oeUmzLzbFTSRZCv77rij09GaGmXf4JmTkg0dCnoHNAJh63W3qxYwzXsxyyaXK-R0ZgxKQMSbViIwZgypTQooHMknpZ7CiADYmbe3pqjvF8Ist3UZsneld8LQ-HkJ0_XdHbYj0I7iENFi6i9qnIekw0nnwybUYnT_Qje4HoY90q6PucDB07w3GXjvfnx_JvdXHhE-3OyX797fdfJmtPxereb3ODORFnwGzJbdamUpYrUtbWCVtKTRDwYwqmGEKclkVX1JUimMFbcUNqqJFU5ZS6XxK4PrXxJBSRNucout0PDfAmgum5oKpuWBqbpiGzct14xDxvw-ccwl5_gcaFWdC |
| CODEN | IEMGAQ |
| ContentType | Journal Article |
| DBID | 97E RIA RIE AAYXX CITATION |
| DOI | 10.1109/TMAG.2025.3626932 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005-present IEEE All-Society Periodicals Package (ASPP) 1998-Present IEEE/IET Electronic Library (IEL) (UW System Shared) CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE/IET Electronic Library (IEL) (UW System Shared) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Physics |
| EISSN | 1941-0069 |
| EndPage | 1 |
| ExternalDocumentID | 10_1109_TMAG_2025_3626932 11222613 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: National Natural Science Foundation Joint Fund grantid: U23B20135 – fundername: National Key Research and Development Program of China grantid: 2025ZD0808300 funderid: 10.13039/501100012166 |
| GroupedDBID | -~X 0R~ 29I 4.4 5GY 6IK 97E AAJGR AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK ACNCT AENEX AGQYO AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS F5P HZ~ IFIPE IPLJI JAVBF LAI M43 MS~ O9- OCL P2P RIA RIE RNS TN5 TWZ 5VS AAYXX AETIX AGSQL AI. AIBXA ALLEH CITATION EJD H~9 IAAWW IBMZZ ICLAB IFJZH VH1 VJK XXG |
| ID | FETCH-LOGICAL-c135t-10f72fa9c84faa7f5f96f74a0e40c950c0913685b64892e81d82ce95dec7769a3 |
| IEDL.DBID | RIE |
| ISSN | 0018-9464 |
| IngestDate | Sat Nov 29 06:59:20 EST 2025 Wed Nov 05 07:09:20 EST 2025 |
| IsPeerReviewed | false |
| IsScholarly | true |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c135t-10f72fa9c84faa7f5f96f74a0e40c950c0913685b64892e81d82ce95dec7769a3 |
| ORCID | 0000-0002-7516-446X 0009-0002-3770-3917 0000-0003-3262-1621 0000-0003-1526-110X 0000-0003-4831-2241 |
| PageCount | 1 |
| ParticipantIDs | ieee_primary_11222613 crossref_primary_10_1109_TMAG_2025_3626932 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-00-00 |
| PublicationDateYYYYMMDD | 2025-01-01 |
| PublicationDate_xml | – year: 2025 text: 2025-00-00 |
| PublicationDecade | 2020 |
| PublicationTitle | IEEE transactions on magnetics |
| PublicationTitleAbbrev | TMAG |
| PublicationYear | 2025 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| SSID | ssj0014510 |
| Score | 2.441587 |
| Snippet | This study proposes a rapid transformer noise prediction method to quantify the propagation of electrical steel material uncertainties in transformer systems.... |
| SourceID | crossref ieee |
| SourceType | Index Database Publisher |
| StartPage | 1 |
| SubjectTerms | Adaptation models backpropagation algorithms Computational modeling Magnetic material Magnetization Magnetostriction Noise noise level Power transformer insulation Stochastic processes stochastic theory Transformers Uncertainty Vectors |
| Title | An Improved Prediction Algorithm for Noise of Transformer Considering Material Parameter Uncertainty |
| URI | https://ieeexplore.ieee.org/document/11222613 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE/IET Electronic Library (IEL) (UW System Shared) customDbUrl: eissn: 1941-0069 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014510 issn: 0018-9464 databaseCode: RIE dateStart: 19650101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NT4MwGG500UQPfswZ51d68GTCVqCF9kiM04NbdtiS3UhX3uoSBcOYif_etjCdBw_egBRC3qfQp-_H8yJ0I0OqNWXcIxqYR2UGHmeQeebbMhjDXBFwIq5P8WjEZzMxborVXS0MALjkM-jZQxfLzwq1sq6yvuEGhi3YHrXbcRzVxVrfIQPK_LrexOe2bzxtQpg-Ef3JMHkwW8GA9az4igiDX4vQRlcVt6gMDv_5OkfooGGPOKnhPkZbkLfR_oamYBvtupxOtTxBWZLj2mcAGR6XNiJjUcDJ63NRLqqXN2wIKx4ViyXgQuPJmsJCiddtPM0T8VBWbpbisbSJXOYET81McZkE1WcHTQf3k7tHr2mq4Ck_ZJX57eo40FIoTrWUsWZaRDqmkgAlSjCirFBoxNk8olwEYOgsDxQIloEyNhcyPEWtvMjhDGEVxVb-TgOZG-sbaqGdvIshgTSeyyDsotu1ldP3WjsjdXsOIlILSWohSRtIuqhjLfwzsDHu-R_XL9Cevb32hlyiVlWu4ArtqI9qsSyv3dT4AvozttA |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV09T8MwELVQAQEDH6WI8umBCSmtk9hJPFaIUkRbdWilbpHjnKESNChNkfj32E4KZWBgSyLLiu5d4mff3TuEboRPlaIscogC5lCRghMxSB39bWmMIZEErIhrPxwOo-mUj6pidVsLAwA2-Qxa5tLG8tNMLs1RWVtzA80WTI_aTUapR8pyre-gAWVuWXHiRqZzPK2CmC7h7fGg86A3gx5rGfkV7nu_lqG1vip2Weke_POFDtF-xR9xpwT8CG3AvI721lQF62jbZnXKxTFKO3NcnhpAike5ickYHHDn9TnLZ8XLG9aUFQ-z2QJwpvB4RWIhx6tGnnpGPBCF9VM8EiaVS9_gifYVm0tQfDbQpHs_vus5VVsFR7o-K_SPV4WeElxGVAkRKqZ4oEIqCFAiOSPSSIUGEUsCGnEPNKGNPAmcpSDDMODCP0G1eTaHU4RlEBoBPAUk0dbX5EJZgRdNA2mYCM9votuVleP3Uj0jtrsOwmMDSWwgiStImqhhLPwzsDLu2R_Pr9FObzzox_3H4dM52jVTlWcjF6hW5Eu4RFvyo5gt8ivrJl-rtLoX |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+Improved+Prediction+Algorithm+for+Noise+of+Transformer+Considering+Material+Parameter+Uncertainty&rft.jtitle=IEEE+transactions+on+magnetics&rft.au=Yang%2C+Fan&rft.au=Xia%2C+Yisha&rft.au=Wang%2C+Jiawei&rft.au=Wang%2C+Pengbo&rft.date=2025&rft.pub=IEEE&rft.issn=0018-9464&rft.spage=1&rft.epage=1&rft_id=info:doi/10.1109%2FTMAG.2025.3626932&rft.externalDocID=11222613 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9464&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9464&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9464&client=summon |