Convergence in total variation for the kinetic Langevin algorithm

We prove non-asymptotic total variation estimates for the kinetic Langevin algorithm in high dimension when the target measure satisfies a Poincaré inequality and has gradient Lipschitz potential. The main point is that the estimate improves significantly upon the corresponding bound for the non-kin...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Mathematical statistics and learning (Online) Ročník 8; číslo 1; s. 71 - 104
Hlavní autor: Lehec, Joseph
Médium: Journal Article
Jazyk:angličtina
Vydáno: 21.08.2025
ISSN:2520-2316, 2520-2324
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:We prove non-asymptotic total variation estimates for the kinetic Langevin algorithm in high dimension when the target measure satisfies a Poincaré inequality and has gradient Lipschitz potential. The main point is that the estimate improves significantly upon the corresponding bound for the non-kinetic version of the algorithm, due to Dalalyan. In particular, the dimension dependence drops from O(n) to O(\sqrt{n}) .
ISSN:2520-2316
2520-2324
DOI:10.4171/msl/49