Convergence in total variation for the kinetic Langevin algorithm

We prove non-asymptotic total variation estimates for the kinetic Langevin algorithm in high dimension when the target measure satisfies a Poincaré inequality and has gradient Lipschitz potential. The main point is that the estimate improves significantly upon the corresponding bound for the non-kin...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematical statistics and learning (Online) Jg. 8; H. 1; S. 71 - 104
1. Verfasser: Lehec, Joseph
Format: Journal Article
Sprache:Englisch
Veröffentlicht: 21.08.2025
ISSN:2520-2316, 2520-2324
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We prove non-asymptotic total variation estimates for the kinetic Langevin algorithm in high dimension when the target measure satisfies a Poincaré inequality and has gradient Lipschitz potential. The main point is that the estimate improves significantly upon the corresponding bound for the non-kinetic version of the algorithm, due to Dalalyan. In particular, the dimension dependence drops from O(n) to O(\sqrt{n}) .
ISSN:2520-2316
2520-2324
DOI:10.4171/msl/49