Fuzzy Data Mining and Genetic Algorithms Applied to Intrusion Detection

A prototype of intelligent intrusion detection system (IIDS) to demonstrate the effectiveness of data mining techniques that utilize fuzzy logic and genetic algorithms. This system combines both anomaly based intrusion detection using fuzzy data mining techniques and misuse detection using tradition...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:I-Manager's Journal on Software Engineering Ročník 1; číslo 4; s. 23 - 30
Hlavní autori: Salome, Jacinth, Ravishankar, Ramya
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Nagercoil iManager Publications 01.04.2007
Predmet:
ISSN:0973-5151, 2230-7168
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:A prototype of intelligent intrusion detection system (IIDS) to demonstrate the effectiveness of data mining techniques that utilize fuzzy logic and genetic algorithms. This system combines both anomaly based intrusion detection using fuzzy data mining techniques and misuse detection using traditional rule-based expert system techniques. The anomaly-based components are developed using fuzzy data mining techniques. They look for deviations from stored patterns of normal behavior. Genetic algorithms are used to tune the fuzzy membership functions and to select an appropriate set of features. The misuse detection components look for previously described patterns of behavior that are likely to indicate an intrusion. Both network traffic and system audit data are used as inputs for both components.
Bibliografia:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Article-2
ObjectType-Feature-1
content type line 23
ISSN:0973-5151
2230-7168
DOI:10.26634/jse.1.4.731