Type Isomorphisms for Multiplicative-Additive Linear Logic

We characterize type isomorphisms in the multiplicative-additive fragment of linear logic (MALL), and thus in *-autonomous categories with finite products, extending a result for the multiplicative fragment by Balat and Di Cosmo. This yields a much richer equational theory involving distributivity a...

Full description

Saved in:
Bibliographic Details
Published in:Logical methods in computer science Vol. 21, Issue 4; no. 4
Main Authors: Di Guardia, Rémi, Laurent, Olivier
Format: Journal Article
Language:English
Published: Logical Methods in Computer Science Association 21.11.2025
Subjects:
ISSN:1860-5974, 1860-5974
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract We characterize type isomorphisms in the multiplicative-additive fragment of linear logic (MALL), and thus in *-autonomous categories with finite products, extending a result for the multiplicative fragment by Balat and Di Cosmo. This yields a much richer equational theory involving distributivity and cancellation laws. The unit-free case is obtained by relying on the proof-net syntax introduced by Hughes and Van Glabbeek. We use the sequent calculus to extend our results to full MALL, including all units, thanks to a study of cut-elimination and rule commutations.
AbstractList We characterize type isomorphisms in the multiplicative-additive fragment of linear logic (MALL), and thus in *-autonomous categories with finite products, extending a result for the multiplicative fragment by Balat and Di Cosmo. This yields a much richer equational theory involving distributivity and cancellation laws. The unit-free case is obtained by relying on the proof-net syntax introduced by Hughes and Van Glabbeek. We use the sequent calculus to extend our results to full MALL, including all units, thanks to a study of cut-elimination and rule commutations.
Author Di Guardia, Rémi
Laurent, Olivier
Author_xml – sequence: 1
  givenname: Rémi
  surname: Di Guardia
  fullname: Di Guardia, Rémi
– sequence: 2
  givenname: Olivier
  surname: Laurent
  fullname: Laurent, Olivier
BackLink https://hal.science/hal-04460547$$DView record in HAL
BookMark eNpNkF9LwzAUxYNMcM59AZ_66B6q-XOTNnsbw7lBxZf5HNI0dZG2Kckc7NvbOhEvB-7hcs59-N2iSec7i9A9wY8gqMyfmtbElJIHWFJYUEz5FZqSXOCUywwm__wNmsf4iYdhjORUTNFyf-5tsou-9aE_uNjGpPYhef1qjq5vnNFHd7LpqqrcaJLCdVaHpPAfztyh61o30c5_9wy9b573621avL3s1qsiNYQSnmpZWllJYAysAFKSzEhjiMmEBY0NqbGGUuMcpAWDqzrHecYx56IsqRWZYTO0uPw96Eb1wbU6nJXXTm1XhRpvGEBgDtmJDVl6yZrgYwy2_isQrH5gqRGWokSBooMGWOwbdWxesQ
ContentType Journal Article
Copyright licence_http://creativecommons.org/publicdomain/zero
Copyright_xml – notice: licence_http://creativecommons.org/publicdomain/zero
DBID AAYXX
CITATION
1XC
VOOES
DOI 10.46298/lmcs-21(4:24)2025
DatabaseName CrossRef
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
DatabaseTitle CrossRef
DatabaseTitleList
CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1860-5974
ExternalDocumentID oai:HAL:hal-04460547v3
10_46298_lmcs_21_4_24_2025
GroupedDBID .4S
.DC
29L
2WC
5GY
5VS
AAFWJ
AAYXX
ADBBV
ADMLS
ADQAK
AENEX
AFPKN
ALMA_UNASSIGNED_HOLDINGS
ARCSS
BCNDV
CITATION
EBS
EJD
FRP
GROUPED_DOAJ
J9A
KQ8
MK~
ML~
M~E
OK1
OVT
P2P
TR2
TUS
XSB
1XC
VOOES
ID FETCH-LOGICAL-c1215-a9be9d94334e641b17c9cc1c76e4a0c1f0a4ba0849e4c0df808750556bb2e67c3
ISSN 1860-5974
IngestDate Sun Nov 30 06:10:27 EST 2025
Thu Nov 27 01:02:05 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords Proof-nets
Type Isomorphisms
Multiplicative-Additive fragment
Linear Logic
Star-autonomous categories with finite products
Sequent calculus
Language English
License licence_http://creativecommons.org/publicdomain/zero/: http://creativecommons.org/publicdomain/zero
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c1215-a9be9d94334e641b17c9cc1c76e4a0c1f0a4ba0849e4c0df808750556bb2e67c3
ORCID 0009-0004-8632-108X
0009-0007-1306-8994
OpenAccessLink http://dx.doi.org/10.46298/lmcs-21(4:24)2025
ParticipantIDs hal_primary_oai_HAL_hal_04460547v3
crossref_primary_10_46298_lmcs_21_4_24_2025
PublicationCentury 2000
PublicationDate 2025-11-21
PublicationDateYYYYMMDD 2025-11-21
PublicationDate_xml – month: 11
  year: 2025
  text: 2025-11-21
  day: 21
PublicationDecade 2020
PublicationTitle Logical methods in computer science
PublicationYear 2025
Publisher Logical Methods in Computer Science Association
Publisher_xml – name: Logical Methods in Computer Science Association
SSID ssj0000331826
Score 2.3558211
Snippet We characterize type isomorphisms in the multiplicative-additive fragment of linear logic (MALL), and thus in *-autonomous categories with finite products,...
SourceID hal
crossref
SourceType Open Access Repository
Index Database
SubjectTerms Computer Science
Logic in Computer Science
Title Type Isomorphisms for Multiplicative-Additive Linear Logic
URI https://hal.science/hal-04460547
Volume 21, Issue 4
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1860-5974
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331826
  issn: 1860-5974
  databaseCode: DOA
  dateStart: 20040101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1860-5974
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331826
  issn: 1860-5974
  databaseCode: M~E
  dateStart: 20040101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3da9swEBdpt4e97Hu0-yhmbLARzGxZsa2-hX6QsiQrrIO-CUlWqCFxStOGPvVv350kf6RQ6B4GRhjZ2OJ-59Pd-T4I-TKTEvMpozBXRRGyPMpDBfs2CEMlM2xSaVJpm01k02l-fs5Pe727OhdmPc-qKr-95Zf_FWqYA7AxdfYf4G4eChNwDqDDCLDD-Djg0al6sloulkDCcuUKLvQnLnDQeujWJhwWhQsaAlsUS_lgy2XdVVTHXiS6DtM2aFb7BhB9v2s2OnBZM5rFy_16X5RNqI-8wQpQeO3XvMRtuOtpoANMuaMdT4N_8aR9cd15ohFE93nKOKmap1GIlktX7Ponl61P4b40ZynlmKIwX-gVLAQ0bgakpuwrdthy6dKbBbRHw9_i9PBYjE-mPzevdqIOR8MxjBdyHuK_bNBYs3WyRZ7QbMAxJHBy1_rooiRB88vlWtnV_PBr-cb2KfuOq9jQZ7Yuane8VU_OXpLn3q4Iho4fXpGeqV6TFzXlAk-5N2Qf2SPoskcA7BE8wB6BY4_AgvKW_Dk-OjsYhb5_RqixZkgouTK84CxJmElZrOJMc61jnaWGyUjHs0gyJaOcccN0VMxy7G6AxZWUoibNdPKObFfLyuyQgBlDVZwwNVADRg3GHvMizQ2FL53GUbJL-jUVxKUrkyLAvLQ0E0gzQWPBBIUDaLZLPgOhmhuxwjmgInCuxeT9Y276QJ61nPqRbF9f3ZhP5KleX5erqz3rYNmzmP4FyX1skw
linkProvider ISSN International Centre
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Type+Isomorphisms+for+Multiplicative-Additive+Linear+Logic&rft.jtitle=Logical+methods+in+computer+science&rft.au=Di+Guardia%2C+R%C3%A9mi&rft.au=Laurent%2C+Olivier&rft.date=2025-11-21&rft.pub=Logical+Methods+in+Computer+Science+Association&rft.eissn=1860-5974&rft.volume=21&rft.issue=4&rft_id=info:doi/10.46298%2Flmcs-21%284%3A24%292025&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=oai%3AHAL%3Ahal-04460547v3
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1860-5974&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1860-5974&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1860-5974&client=summon