A Characterization of Basic Feasible Functionals Through Higher-Order Rewriting and Tuple Interpretations
The class of type-two basic feasible functionals ($\mathtt{BFF}_2$) is the analogue of $\mathtt{FP}$ (polynomial time functions) for type-2 functionals, that is, functionals that can take (first-order) functions as arguments. $\mathtt{BFF}_2$ can be defined through Oracle Turing machines with runnin...
Gespeichert in:
| Veröffentlicht in: | Logical methods in computer science Jg. 21, Issue 4 |
|---|---|
| Hauptverfasser: | , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Logical Methods in Computer Science Association
05.11.2025
|
| Schlagworte: | |
| ISSN: | 1860-5974, 1860-5974 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Zusammenfassung: | The class of type-two basic feasible functionals ($\mathtt{BFF}_2$) is the analogue of $\mathtt{FP}$ (polynomial time functions) for type-2 functionals, that is, functionals that can take (first-order) functions as arguments. $\mathtt{BFF}_2$ can be defined through Oracle Turing machines with running time bounded by second-order polynomials. On the other hand, higher-order term rewriting provides an elegant formalism for expressing higher-order computation. We address the problem of characterizing $\mathtt{BFF}_2$ by higher-order term rewriting. Various kinds of interpretations for first-order term rewriting have been introduced in the literature for proving termination and characterizing first-order complexity classes. In this paper, we consider a recently introduced notion of cost-size interpretations for higher-order term rewriting and see second order rewriting as ways of computing type-2 functionals. We then prove that the class of functionals represented by higher-order terms admitting polynomially bounded cost-size interpretations exactly corresponds to $\mathtt{BFF}_2$. |
|---|---|
| ISSN: | 1860-5974 1860-5974 |
| DOI: | 10.46298/lmcs-21(4:19)2025 |