Fast Encoding and Decoding Algorithms for Arbitrary (n,k) Reed-Solomon Codes Over \mathbb

Recently, a new polynomial basis over finite fields was proposed such that the computational complexity of the fast Fourier transform (FFT) is <inline-formula> <tex-math notation="LaTeX">O(n\log n) </tex-math></inline-formula>. Based on FFTs, the encoding and decodi...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE communications letters Ročník 24; číslo 4; s. 716 - 719
Hlavní autoři: Tang, Nianqi, Lin, Yun
Médium: Journal Article
Jazyk:angličtina
Vydáno: IEEE 01.04.2020
Témata:
ISSN:1089-7798, 1558-2558
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Recently, a new polynomial basis over finite fields was proposed such that the computational complexity of the fast Fourier transform (FFT) is <inline-formula> <tex-math notation="LaTeX">O(n\log n) </tex-math></inline-formula>. Based on FFTs, the encoding and decoding algorithms for Reed-Solomon (RS) codes were proposed, which are shown to have the lowest computational complexity in the literature. However, these algorithms require that the code length and the number of parity symbols must be power of two. In this letter, we present the encoding and decoding algorithms for arbitrary RS codes based on FFTs. Furthermore, these new algorithms also reach the best known complexity bound.
ISSN:1089-7798
1558-2558
DOI:10.1109/LCOMM.2020.2965453