The Pisot conjecture for -substitutions
We prove the Pisot conjecture for $\unicode[STIX]{x1D6FD}$ -substitutions: if $\unicode[STIX]{x1D6FD}$ is a Pisot number, then the tiling dynamical system $(\unicode[STIX]{x1D6FA}_{\unicode[STIX]{x1D713}_{\unicode[STIX]{x1D6FD}}},\mathbb{R})$ associated with the $\unicode[STIX]{x1D6FD}$ -substitutio...
Gespeichert in:
| Veröffentlicht in: | Ergodic theory and dynamical systems Jg. 38; H. 2; S. 444 - 472 |
|---|---|
| 1. Verfasser: | |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Cambridge
Cambridge University Press
01.04.2018
|
| Schlagworte: | |
| ISSN: | 0143-3857, 1469-4417 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Zusammenfassung: | We prove the Pisot conjecture for $\unicode[STIX]{x1D6FD}$ -substitutions: if $\unicode[STIX]{x1D6FD}$ is a Pisot number, then the tiling dynamical system $(\unicode[STIX]{x1D6FA}_{\unicode[STIX]{x1D713}_{\unicode[STIX]{x1D6FD}}},\mathbb{R})$ associated with the $\unicode[STIX]{x1D6FD}$ -substitution has pure discrete spectrum. As corollaries: (1) arithmetical coding of the hyperbolic solenoidal automorphism associated with the companion matrix of the minimal polynomial of any Pisot number is almost everywhere one-to-one; and (2) all Pisot numbers are weakly finitary. |
|---|---|
| Bibliographie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 0143-3857 1469-4417 |
| DOI: | 10.1017/etds.2016.44 |