83‐3: Inverse Design of Liquid Crystal Phase Modulators for 2D/3D Switchable Display Based on Deep Learning
The fringe field effect in liquid crystal (LC) devices can cause pixel crosstalk issues. Therefore, LC devices with multiple electrode structures require multiple calibrations to achieve an approximate distribution of the target phase modulation. At the same time, optical inverse design based on dat...
Uloženo v:
| Vydáno v: | SID International Symposium Digest of technical papers Ročník 55; číslo 1; s. 1159 - 1162 |
|---|---|
| Hlavní autoři: | , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Campbell
Wiley Subscription Services, Inc
01.06.2024
|
| Témata: | |
| ISSN: | 0097-966X, 2168-0159 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | The fringe field effect in liquid crystal (LC) devices can cause pixel crosstalk issues. Therefore, LC devices with multiple electrode structures require multiple calibrations to achieve an approximate distribution of the target phase modulation. At the same time, optical inverse design based on data‐driven algorithms is also a highly popular topic. This article introduces a deep‐learning approach to realize inverse phase modulation in LC devices. By adopting the deep learning method for inverse phase modulation in LC devices, can effectively alleviate the problems caused by fringe field effects and achieve more precise and accurate phase modulation distribution. |
|---|---|
| Bibliografie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 0097-966X 2168-0159 |
| DOI: | 10.1002/sdtp.17745 |