ПОСТРОЕНИЕ МАТЕМАТИЧЕСКОЙ МОДЕЛИ ВЕРОЯТНОСТИ БАНКРОТСТВА КРЕДИТНЫХ ОРГАНИЗАЦИЙ НА ОСНОВЕ БИНАРНОЙ ЛОГИСТИЧЕСКОЙ РЕГРЕССИИ
В практике управления кредитных организаций в рамках реализации задач риск-менеджмента находят ограниченное применение экономико-математические методы анализа степени влияния различных факторов на финансовую устойчивость кредитной организации, что снижает результативность управленческих воздействий....
Saved in:
| Published in: | Региональные проблемы преобразования экономики no. 3; pp. 123 - 129 |
|---|---|
| Main Author: | |
| Format: | Journal Article |
| Language: | English |
| Published: |
07.09.2021
|
| ISSN: | 1812-7096 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | В практике управления кредитных организаций в рамках реализации задач риск-менеджмента находят ограниченное применение экономико-математические методы анализа степени влияния различных факторов на финансовую устойчивость кредитной организации, что снижает результативность управленческих воздействий. Следовательно, совершенствование методов анализа и оценки стабильности финансового положения кредитной организации является одним из перспективных направлений процесса управления банковской системой. Целью исследования является применение экономико-математических методов для построения модели вероятности банкротства кредитных организаций на основе бинарной логистической регрессии. Основными методами, нашедшими применение в настоящем исследовании, являются: методы эконометрического анализа, системного и экономического анализа. В качестве базовой модели была использована логистическая регрессия. Применение таких эконометрических методов, как кластерный и факторный анализ, позволили на основании информации об обязательных резервах, чистой ссудной задолженности и нераспределенной прибыли кластеризовать кредитные организации и дать количественную оценку вероятности их банкротства на 2018 г. Эмпирическую базу для проведенного исследования составила информация о финансовом состоянии кредитных организаций Российской Федерации в 2018 г., представленная на крупнейшем независимом финансовом интернет-портале – Банки. Ру. Результаты работы: получено уравнение бинарной логистической регрессии, позволяющее построить модель вероятности банкротства кредитных организаций, экономическая интерпретация которой позволяет сделать вывод о наибольшем влиянии на вероятность банкротства банков таких факторов, как чистая ссудная задолженность и выпущенные долговые обязательства, соотнесенные с уставным капиталом. Область применения: полученные результаты могут быть использованы в практике управления коммерческих банков в рамках реализации задач риск-менеджмента. Выводы. Проверка качества полученной бинарной логистической регрессии показала, что данная модель является адекватной и может быть использована в организациях банковского сектора для оценки и прогнозирования вероятности ухудшения финансового состояния кредитной организации. Перспективным направлением развития модели видится включение в модель показателей банковских рейтингов для более точной оценки риска наступления банкротства. |
|---|---|
| ISSN: | 1812-7096 |
| DOI: | 10.26726/1812-7096-2021-3-123-129 |