Rank inequalities for the Heegaard Floer homology of branched covers

We show that if L is a nullhomologous link in a 3-manifold Y and \Sigma(Y, L) is a double cover of Y branched along L then for each spin ^c -structure \mathfrak{s} on Y there is an inequality \dim\widehat{HF}(\Sigma(Y, L), \pi^\ast\mathfrak{s}; \mathbb{F}_2) \geq \dim \widehat{HF} (Y, \mathfrak{s};...

Full description

Saved in:
Bibliographic Details
Published in:Documenta mathematica Journal der Deutschen Mathematiker-Vereinigung. Vol. 27; pp. 581 - 612
Main Authors: Hendricks, Kristen, Lidman, Tye, Lipshitz, Robert
Format: Journal Article
Language:English
Published: 2022
ISSN:1431-0635, 1431-0643
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We show that if L is a nullhomologous link in a 3-manifold Y and \Sigma(Y, L) is a double cover of Y branched along L then for each spin ^c -structure \mathfrak{s} on Y there is an inequality \dim\widehat{HF}(\Sigma(Y, L), \pi^\ast\mathfrak{s}; \mathbb{F}_2) \geq \dim \widehat{HF} (Y, \mathfrak{s}; \mathbb{F}_2). We discuss the relationship with the L -space conjecture and give some other topological applications, as well as an analogous result for sutured Floer homology.
ISSN:1431-0635
1431-0643
DOI:10.4171/dm/878