Rank inequalities for the Heegaard Floer homology of branched covers

We show that if L is a nullhomologous link in a 3-manifold Y and \Sigma(Y, L) is a double cover of Y branched along L then for each spin ^c -structure \mathfrak{s} on Y there is an inequality \dim\widehat{HF}(\Sigma(Y, L), \pi^\ast\mathfrak{s}; \mathbb{F}_2) \geq \dim \widehat{HF} (Y, \mathfrak{s};...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Documenta mathematica Journal der Deutschen Mathematiker-Vereinigung. Ročník 27; s. 581 - 612
Hlavní autoři: Hendricks, Kristen, Lidman, Tye, Lipshitz, Robert
Médium: Journal Article
Jazyk:angličtina
Vydáno: 2022
ISSN:1431-0635, 1431-0643
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:We show that if L is a nullhomologous link in a 3-manifold Y and \Sigma(Y, L) is a double cover of Y branched along L then for each spin ^c -structure \mathfrak{s} on Y there is an inequality \dim\widehat{HF}(\Sigma(Y, L), \pi^\ast\mathfrak{s}; \mathbb{F}_2) \geq \dim \widehat{HF} (Y, \mathfrak{s}; \mathbb{F}_2). We discuss the relationship with the L -space conjecture and give some other topological applications, as well as an analogous result for sutured Floer homology.
ISSN:1431-0635
1431-0643
DOI:10.4171/dm/878