Predicting prime editing efficiency across diverse edit types and chromatin contexts with machine learning

Prime editing is a powerful genome editing technology, but its efficiency varies depending on the pegRNA design and target locus. Existing computational models for predicting prime editing rates are limited by their focus on specific edit types and by omitting the local chromatin environment. In our...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:bioRxiv
Hlavní autori: Mathis, Nicolas, Allam, Ahmed, Tálas, András, Benvenuto, Elena, Schep, Ruben, Damodharan, Tanav, Balázs, Zsolt, Janjuha, Sharan, Schmidheini, Lukas, Böck, Desirée, van Steensel, Bas, Krauthammer, Michael, Schwank, Gerald
Médium: Paper
Jazyk:English
Vydavateľské údaje: Cold Spring Harbor Laboratory 09.10.2023
Vydanie:1.1
Predmet:
ISSN:2692-8205
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:Prime editing is a powerful genome editing technology, but its efficiency varies depending on the pegRNA design and target locus. Existing computational models for predicting prime editing rates are limited by their focus on specific edit types and by omitting the local chromatin environment. In our study, we developed machine learning models that predict prime editing efficiencies across a wide range of edit types up to 15 bp (’PRIDICT2.0’) and in different chromatin contexts (’ePRIDICT’). Both models can be accessed at www.pridict.it.
Bibliografia:Competing Interest Statement: G.S. is a scientific advisor to Prime Medicine.
ISSN:2692-8205
DOI:10.1101/2023.10.09.561414