Predicting prime editing efficiency across diverse edit types and chromatin contexts with machine learning
Prime editing is a powerful genome editing technology, but its efficiency varies depending on the pegRNA design and target locus. Existing computational models for predicting prime editing rates are limited by their focus on specific edit types and by omitting the local chromatin environment. In our...
Uloženo v:
| Vydáno v: | bioRxiv |
|---|---|
| Hlavní autoři: | , , , , , , , , , , , , |
| Médium: | Paper |
| Jazyk: | angličtina |
| Vydáno: |
Cold Spring Harbor Laboratory
09.10.2023
|
| Vydání: | 1.1 |
| Témata: | |
| ISSN: | 2692-8205 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | Prime editing is a powerful genome editing technology, but its efficiency varies depending on the pegRNA design and target locus. Existing computational models for predicting prime editing rates are limited by their focus on specific edit types and by omitting the local chromatin environment. In our study, we developed machine learning models that predict prime editing efficiencies across a wide range of edit types up to 15 bp (’PRIDICT2.0’) and in different chromatin contexts (’ePRIDICT’). Both models can be accessed at www.pridict.it. |
|---|---|
| Bibliografie: | Competing Interest Statement: G.S. is a scientific advisor to Prime Medicine. |
| ISSN: | 2692-8205 |
| DOI: | 10.1101/2023.10.09.561414 |