Predicting prime editing efficiency across diverse edit types and chromatin contexts with machine learning

Prime editing is a powerful genome editing technology, but its efficiency varies depending on the pegRNA design and target locus. Existing computational models for predicting prime editing rates are limited by their focus on specific edit types and by omitting the local chromatin environment. In our...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:bioRxiv
Hlavní autoři: Mathis, Nicolas, Allam, Ahmed, Tálas, András, Benvenuto, Elena, Schep, Ruben, Damodharan, Tanav, Balázs, Zsolt, Janjuha, Sharan, Schmidheini, Lukas, Böck, Desirée, van Steensel, Bas, Krauthammer, Michael, Schwank, Gerald
Médium: Paper
Jazyk:angličtina
Vydáno: Cold Spring Harbor Laboratory 09.10.2023
Vydání:1.1
Témata:
ISSN:2692-8205
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Prime editing is a powerful genome editing technology, but its efficiency varies depending on the pegRNA design and target locus. Existing computational models for predicting prime editing rates are limited by their focus on specific edit types and by omitting the local chromatin environment. In our study, we developed machine learning models that predict prime editing efficiencies across a wide range of edit types up to 15 bp (’PRIDICT2.0’) and in different chromatin contexts (’ePRIDICT’). Both models can be accessed at www.pridict.it.
Bibliografie:Competing Interest Statement: G.S. is a scientific advisor to Prime Medicine.
ISSN:2692-8205
DOI:10.1101/2023.10.09.561414