Mathis, N., Allam, A., Tálas, A., Benvenuto, E., Schep, R., Damodharan, T., . . . Schwank, G. (2023, October 9). Predicting prime editing efficiency across diverse edit types and chromatin contexts with machine learning bioRxiv. https://doi.org/10.1101/2023.10.09.561414
Chicago Style (17th ed.) CitationMathis, Nicolas, et al. "Predicting Prime Editing Efficiency Across Diverse Edit Types and Chromatin Contexts with Machine Learning." BioRxiv 9 Oct. 2023. https://doi.org/10.1101/2023.10.09.561414.
MLA (9th ed.) CitationMathis, Nicolas, et al. "Predicting Prime Editing Efficiency Across Diverse Edit Types and Chromatin Contexts with Machine Learning." BioRxiv, 9 Oct. 2023, https://doi.org/10.1101/2023.10.09.561414.
Warning: These citations may not always be 100% accurate.