Applications of Complex Variables to Spectral Theory and Completely Integrable Partial Differential Equations

We generalize the 1+1 Kaup--Broer system to an integrable 2+1 dimensional system via the dressing method. This allows us to compute N-soliton solutions to this 2+1 dimensional system, and also to the 1+1 Kaup–Broer system. This method also allows the computation of new solutions that generalize the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Nabelek, Patrik V
Format: Dissertation
Sprache:Englisch
Veröffentlicht: ProQuest Dissertations & Theses 01.01.2018
Schlagworte:
ISBN:9780355884456, 0355884453
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We generalize the 1+1 Kaup--Broer system to an integrable 2+1 dimensional system via the dressing method. This allows us to compute N-soliton solutions to this 2+1 dimensional system, and also to the 1+1 Kaup–Broer system. This method also allows the computation of new solutions that generalize the N-soliton solutions a natural way. We formulate the inverse spectral problem for Hill's operators with bounded periodic potentials as a Riemann–Hilbert problem, and characterize the space of solutions to this Riemann–Hilbert problem. This gives an alternative proof that such a Hill's operator is determined uniquely by its spectral gaps, a Dirichlet eigenvalue in the closure of each spectral gap, and a signature for each Dirichlet eigenvalue in the interior of a spectral gap.
Bibliographie:SourceType-Dissertations & Theses-1
ObjectType-Dissertation/Thesis-1
content type line 12
ISBN:9780355884456
0355884453