Bio-AIMS Collection of Chemoinformatics Web Tools based on Molecular Graph Information and Artificial Intelligence Models

The molecular information encoding into molecular descriptors is the first step into in silico Chemoinformatics methods in Drug Design. The Machine Learning methods are a complex solution to find prediction models for specific biological properties of molecules. These models connect the molecular st...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Combinatorial chemistry & high throughput screening Ročník 18; číslo 8; s. 735
Hlavní autoři: Munteanu, Cristian R, Gonzalez-Diaz, Humberto, Garcia, Rafael, Loza, Mabel, Pazos, Alejandro
Médium: Journal Article
Jazyk:angličtina
Vydáno: United Arab Emirates 01.01.2015
Témata:
ISSN:1875-5402, 1875-5402
On-line přístup:Zjistit podrobnosti o přístupu
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:The molecular information encoding into molecular descriptors is the first step into in silico Chemoinformatics methods in Drug Design. The Machine Learning methods are a complex solution to find prediction models for specific biological properties of molecules. These models connect the molecular structure information such as atom connectivity (molecular graphs) or physical-chemical properties of an atom/group of atoms to the molecular activity (Quantitative Structure - Activity Relationship, QSAR). Due to the complexity of the proteins, the prediction of their activity is a complicated task and the interpretation of the models is more difficult. The current review presents a series of 11 prediction models for proteins, implemented as free Web tools on an Artificial Intelligence Model Server in Biosciences, Bio-AIMS (http://bio-aims.udc.es/TargetPred.php). Six tools predict protein activity, two models evaluate drug - protein target interactions and the other three calculate protein - protein interactions. The input information is based on the protein 3D structure for nine models, 1D peptide amino acid sequence for three tools and drug SMILES formulas for two servers. The molecular graph descriptor-based Machine Learning models could be useful tools for in silico screening of new peptides/proteins as future drug targets for specific treatments.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
ISSN:1875-5402
1875-5402
DOI:10.2174/1386207318666150803140950