A Review on Multi-organ Cancer Detection Using Advanced Machine Learning Techniques
Abnormal behaviors of tumors pose a risk to human survival. Thus, the detection of cancers at their initial stage is beneficial for patients and lowers the mortality rate. However, this can be difficult due to various factors related to imaging modalities, such as complex background, low contrast, b...
Saved in:
| Published in: | Current medical imaging reviews Vol. 17; no. 6; p. 686 |
|---|---|
| Main Authors: | , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
01.06.2021
|
| ISSN: | 1573-4056, 1573-4056 |
| Online Access: | Get more information |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | Abnormal behaviors of tumors pose a risk to human survival. Thus, the detection of cancers at their initial stage is beneficial for patients and lowers the mortality rate. However, this can be difficult due to various factors related to imaging modalities, such as complex background, low contrast, brightness issues, poorly defined borders and the shape of the affected area. Recently, computer-aided diagnosis (CAD) models have been used to accurately diagnose tumors in different parts of the human body, especially breast, brain, lung, liver, skin and colon cancers. These cancers are diagnosed using various modalities, including computed tomography (CT), magnetic resonance imaging (MRI), colonoscopy, mammography, dermoscopy and histopathology. The aim of this review was to investigate existing approaches for the diagnosis of breast, brain, lung, liver, skin and colon tumors. The review focuses on decision-making systems, including handcrafted features and deep learning architectures for tumor detection.Abnormal behaviors of tumors pose a risk to human survival. Thus, the detection of cancers at their initial stage is beneficial for patients and lowers the mortality rate. However, this can be difficult due to various factors related to imaging modalities, such as complex background, low contrast, brightness issues, poorly defined borders and the shape of the affected area. Recently, computer-aided diagnosis (CAD) models have been used to accurately diagnose tumors in different parts of the human body, especially breast, brain, lung, liver, skin and colon cancers. These cancers are diagnosed using various modalities, including computed tomography (CT), magnetic resonance imaging (MRI), colonoscopy, mammography, dermoscopy and histopathology. The aim of this review was to investigate existing approaches for the diagnosis of breast, brain, lung, liver, skin and colon tumors. The review focuses on decision-making systems, including handcrafted features and deep learning architectures for tumor detection. |
|---|---|
| Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 |
| ISSN: | 1573-4056 1573-4056 |
| DOI: | 10.2174/1573405616666201217112521 |