New meaning for NLP: the trials and tribulations of natural language processing with GPT-3 in ophthalmology
Natural language processing (NLP) is a subfield of machine intelligence focused on the interaction of human language with computer systems. NLP has recently been discussed in the mainstream media and the literature with the advent of Generative Pre-trained Transformer 3 (GPT-3), a language model cap...
Saved in:
| Published in: | British journal of ophthalmology Vol. 106; no. 7; pp. 889 - 892 |
|---|---|
| Main Authors: | , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
BMA House, Tavistock Square, London, WC1H 9JR
BMJ Publishing Group Ltd
01.07.2022
BMJ Publishing Group LTD |
| Subjects: | |
| ISSN: | 0007-1161, 1468-2079, 1468-2079 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Natural language processing (NLP) is a subfield of machine intelligence focused on the interaction of human language with computer systems. NLP has recently been discussed in the mainstream media and the literature with the advent of Generative Pre-trained Transformer 3 (GPT-3), a language model capable of producing human-like text. The release of GPT-3 has also sparked renewed interest on the applicability of NLP to contemporary healthcare problems. This article provides an overview of NLP models, with a focus on GPT-3, as well as discussion of applications specific to ophthalmology. We also outline the limitations of GPT-3 and the challenges with its integration into routine ophthalmic care. |
|---|---|
| AbstractList | Natural language processing (NLP) is a subfield of machine intelligence focused on the interaction of human language with computer systems. NLP has recently been discussed in the mainstream media and the literature with the advent of Generative Pre-trained Transformer 3 (GPT-3), a language model capable of producing human-like text. The release of GPT-3 has also sparked renewed interest on the applicability of NLP to contemporary healthcare problems. This article provides an overview of NLP models, with a focus on GPT-3, as well as discussion of applications specific to ophthalmology. We also outline the limitations of GPT-3 and the challenges with its integration into routine ophthalmic care. Natural language processing (NLP) is a subfield of machine intelligence focused on the interaction of human language with computer systems. NLP has recently been discussed in the mainstream media and the literature with the advent of Generative Pre-trained Transformer 3 (GPT-3), a language model capable of producing human-like text. The release of GPT-3 has also sparked renewed interest on the applicability of NLP to contemporary healthcare problems. This article provides an overview of NLP models, with a focus on GPT-3, as well as discussion of applications specific to ophthalmology. We also outline the limitations of GPT-3 and the challenges with its integration into routine ophthalmic care.Natural language processing (NLP) is a subfield of machine intelligence focused on the interaction of human language with computer systems. NLP has recently been discussed in the mainstream media and the literature with the advent of Generative Pre-trained Transformer 3 (GPT-3), a language model capable of producing human-like text. The release of GPT-3 has also sparked renewed interest on the applicability of NLP to contemporary healthcare problems. This article provides an overview of NLP models, with a focus on GPT-3, as well as discussion of applications specific to ophthalmology. We also outline the limitations of GPT-3 and the challenges with its integration into routine ophthalmic care. |
| Author | Ellershaw, Simon Marie, Abdullah Keane, Pearse A Nath, Siddharth Korot, Edward |
| Author_xml | – sequence: 1 givenname: Siddharth orcidid: 0000-0003-4520-7163 surname: Nath fullname: Nath, Siddharth organization: National Institute for Health Research, Biomedical Research Centre for Ophthalmology, UCL Institute of Ophthalmology, Moorfields Eye Hospital City Road Campus, London, UK – sequence: 2 givenname: Abdullah surname: Marie fullname: Marie, Abdullah organization: School of Medicine and Dentistry, Queen's University Belfast, Belfast, UK – sequence: 3 givenname: Simon surname: Ellershaw fullname: Ellershaw, Simon organization: UKRI Centre for Doctoral Training in AI-enabled Healthcare, University College London, London, UK – sequence: 4 givenname: Edward orcidid: 0000-0002-5687-1564 surname: Korot fullname: Korot, Edward organization: Byers Eye Institute, Stanford University, Stanford, California, USA – sequence: 5 givenname: Pearse A surname: Keane fullname: Keane, Pearse A email: p.keane@ucl.ac.uk organization: National Institute for Health Research, Biomedical Research Centre for Ophthalmology, UCL Institute of Ophthalmology, Moorfields Eye Hospital City Road Campus, London, UK |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35523534$$D View this record in MEDLINE/PubMed |
| BookMark | eNqNkUtP3DAUha2Kqgy0f6Gy1A2bgG_8SNIFEkIUkEaUBV1btseZ8TSxB9sR4t_Xw4BALNqu_NB3zz065wDt-eAtQhjIMQAVJ3odNqu8UsMYhqomdV3RGoDBBzQDJtry1XR7aEYIaSoAAfvoIKV1edYCmk9on3JeU07ZDP2-sQ94tMo7v8R9iPhmfvsd55XFOTo1JKz8YnvV06CyCz7h0GOv8hTVgAfll5NaWryJwdiUthoPLq_w5e1dRbHz-NVmWD5-Rh_7Imm_PJ-H6NePi7vzq2r-8_L6_GxeaQYiV6ZlHe-YsUZz0nNmiWGqa4yl3GrgVDFqRQOw0D3vaafpAlTXk0aJkk2jGT1ERzvdYut-sinL0SVjh2LXhinJWgggbUsIFPTbO3QdpuiLu0K1RFDgpPk7JQSnXUtFob4-U5Me7UJuohtVfJQvYRfgdAeYGFKKtpfG5adUc1RukEDktl35tl25bVfu2i0C7TuBlx3_Mcp2o3pcv7r_59gffIm-Xg |
| CitedBy_id | crossref_primary_10_1016_j_archger_2024_105409 crossref_primary_10_2196_51282 crossref_primary_10_1177_09760016241259851 crossref_primary_10_1007_s10462_024_11080_y crossref_primary_10_1016_j_chbr_2025_100652 crossref_primary_10_1097_IAE_0000000000004351 crossref_primary_10_1016_j_aopr_2025_01_002 crossref_primary_10_3390_ijerph20043378 crossref_primary_10_7759_cureus_58232 crossref_primary_10_1007_s11899_023_00716_5 crossref_primary_10_1016_j_cmpb_2024_108326 crossref_primary_10_1097_ICL_0000000000001160 crossref_primary_10_3390_biom13020387 crossref_primary_10_2196_47814 crossref_primary_10_1016_j_cose_2024_103998 crossref_primary_10_3390_bdcc7010035 crossref_primary_10_1038_s41746_025_01461_0 crossref_primary_10_3389_frai_2025_1527010 crossref_primary_10_1080_08164622_2023_2298812 crossref_primary_10_1007_s10462_024_10921_0 crossref_primary_10_1002_mef2_75 crossref_primary_10_1097_ICU_0000000000001172 crossref_primary_10_1016_j_xops_2024_100681 crossref_primary_10_1136_bjo_2023_325143 crossref_primary_10_2147_JMDH_S441790 crossref_primary_10_2196_47621 crossref_primary_10_3389_fdata_2024_1357926 crossref_primary_10_5662_wjm_v13_i4_170 crossref_primary_10_1097_ICO_0000000000003492 crossref_primary_10_1002_eng2_70249 crossref_primary_10_1371_journal_pdig_0000341 crossref_primary_10_7759_cureus_86288 crossref_primary_10_1016_j_ribaf_2025_102939 crossref_primary_10_3390_bdcc9060151 crossref_primary_10_1007_s00417_024_06470_5 crossref_primary_10_1007_s10462_024_10849_5 crossref_primary_10_3390_jpm15030097 crossref_primary_10_1136_bjo_2023_324438 crossref_primary_10_5472_marumj_1571218 crossref_primary_10_1136_bjo_2023_325054 crossref_primary_10_1016_j_apjo_2024_100106 crossref_primary_10_3390_bdcc8100130 crossref_primary_10_1136_jnis_2023_020353 crossref_primary_10_1016_j_asoc_2025_113524 crossref_primary_10_1136_bjo_2023_325053 crossref_primary_10_1136_bjo_2024_326064 crossref_primary_10_3390_su16031245 crossref_primary_10_3390_app132111953 crossref_primary_10_1007_s40123_023_00805_x crossref_primary_10_1109_ACCESS_2024_3416755 crossref_primary_10_1016_j_teler_2023_100065 crossref_primary_10_1007_s44163_025_00381_y crossref_primary_10_15388_Amed_2024_31_2_18 crossref_primary_10_1038_s41746_025_01772_2 crossref_primary_10_1136_bjo_2024_325459 crossref_primary_10_1016_j_clae_2024_102125 crossref_primary_10_1016_j_jbi_2025_104861 crossref_primary_10_1016_j_rbmo_2023_04_009 crossref_primary_10_1108_MRJIAM_01_2024_1501 crossref_primary_10_1007_s00521_023_08941_y crossref_primary_10_1136_bjo_2023_325046 crossref_primary_10_1016_j_fertnstert_2023_03_010 crossref_primary_10_4103_IJO_IJO_2510_23 crossref_primary_10_1049_cmu2_12714 |
| Cites_doi | 10.1126/science.aal4230 10.1111/j.1525-1497.2006.00415.x 10.1001/jamaophthalmol.2018.7051 10.1016/j.jbi.2021.103864 10.1111/ceo.13666 10.1097/ICU.0000000000000789 10.1002/pds.4149 10.1016/S0140-6736(21)00722-4 10.1038/s41746-021-00464-x 10.22148/001c.17212 10.1136/amiajnl-2011-000456 10.1016/S2589-7500(19)30108-6 10.1007/s11999-011-1770-9 10.1007/s11023-020-09548-1 10.1111/ceo.13340 10.1111/j.1526-4610.2010.01763.x 10.1200/JCO.2017.35.15_suppl.6501 10.1016/j.ophtha.2020.10.012 10.5301/ejo.5000706 10.1007/s11136-008-9399-1 10.1177/0840470419872775 10.1109/PROC.1986.13580 10.1093/oso/9780198250791.003.0017 10.1109/MICC.2017.8311752 10.3115/v1/D14-1179 |
| ContentType | Journal Article |
| Copyright | Author(s) (or their employer(s)) 2022. No commercial re-use. See rights and permissions. Published by BMJ. 2022 Author(s) (or their employer(s)) 2022. No commercial re-use. See rights and permissions. Published by BMJ. |
| Copyright_xml | – notice: Author(s) (or their employer(s)) 2022. No commercial re-use. See rights and permissions. Published by BMJ. – notice: 2022 Author(s) (or their employer(s)) 2022. No commercial re-use. See rights and permissions. Published by BMJ. |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7X7 7XB 88E 8FI 8FJ 8FK ABUWG AFKRA BENPR BTHHO CCPQU FYUFA GHDGH K9. M0S M1P PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI PRINS 7X8 |
| DOI | 10.1136/bjophthalmol-2022-321141 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central - New (Subscription) BMJ Journals ProQuest One Community College Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Health & Medical Complete (Alumni) ProQuest Health & Medical Collection Medical Database ProQuest Central Premium ProQuest One Academic ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Central China ProQuest Hospital Collection (Alumni) ProQuest Central ProQuest Health & Medical Complete ProQuest Health & Medical Research Collection Health Research Premium Collection ProQuest Medical Library ProQuest One Academic UKI Edition Health and Medicine Complete (Alumni Edition) BMJ Journals Health & Medical Research Collection ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) ProQuest Medical Library (Alumni) ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | CrossRef MEDLINE - Academic ProQuest One Academic Middle East (New) MEDLINE ProQuest One Academic Middle East (New) |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine |
| EISSN | 1468-2079 |
| EndPage | 892 |
| ExternalDocumentID | 35523534 10_1136_bjophthalmol_2022_321141 bjophthalmol |
| Genre | Research Support, Non-U.S. Gov't Journal Article Review |
| GrantInformation_xml | – fundername: UK Research and Innovation Future Leaders Fellowship grantid: MR/T019050/1 – fundername: Moorfields Eye Charity Career Development Award grantid: R190028A – fundername: Medical Research Council grantid: MR/T019050/1 |
| GroupedDBID | --- -~X .55 .GJ .VT 0R~ 18M 23N 2WC 354 39C 3O- 4.4 40O 53G 5GY 5RE 5VS 6J9 7X7 7~S 88E 8FI 8FJ 8R4 8R5 AAHLL AAKAS AAOJX AAWJN ABAAH ABJNI ABKDF ABMQD ABTFR ABUWG ABVAJ ACCCW ACGFO ACGFS ACGTL ACHTP ACMFJ ACNCT ACOAB ACOFX ACQSR ACTZY ADBBV ADCEG ADZCM AENEX AFKRA AFWFF AGQPQ AHMBA AHNKE AHQMW AJYBZ ALIPV ALMA_UNASSIGNED_HOLDINGS ASPBG AVWKF AZFZN BAWUL BENPR BLJBA BOMFT BPHCQ BTFSW BTHHO BVXVI C1A C45 CAG CCPQU COF CS3 CXRWF DIK DU5 E3Z EBS EJD F5P FYUFA H13 HAJ HMCUK HYE HZ~ IAO IEA IHR IOF ITC J5H KQ8 L7B M1P N9A NTWIH NXWIF O9- OK1 OVD P2P PHGZT PQQKQ PROAC PSQYO Q2X R53 RHI RMJ RPM RV8 TEORI TR2 UAW UKHRP UYXKK V24 VM9 W8F WH7 WOQ X7M XOL YFH YQY ZGI AAFWJ AAYXX ACQHZ AERUA AFFHD CITATION PHGZM PJZUB PPXIY CGR CUY CVF ECM EIF NPM 3V. 7XB 8FK K9. PKEHL PQEST PQUKI PRINS 7X8 PUEGO |
| ID | FETCH-LOGICAL-b416t-c849594cecb50f54e0c4a97ce35eb153a43e6711dbf5f39b3d1a9f07a61137b43 |
| IEDL.DBID | 7X7 |
| ISICitedReferencesCount | 70 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000793336000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0007-1161 1468-2079 |
| IngestDate | Fri Sep 05 13:34:40 EDT 2025 Tue Oct 07 07:16:18 EDT 2025 Tue Oct 07 07:29:14 EDT 2025 Mon Jul 21 06:03:39 EDT 2025 Sat Nov 29 03:06:10 EST 2025 Tue Nov 18 22:44:19 EST 2025 Thu Apr 24 22:50:40 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 7 |
| Keywords | Telemedicine Diagnostic tests/Investigation |
| Language | English |
| License | Author(s) (or their employer(s)) 2022. No commercial re-use. See rights and permissions. Published by BMJ. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-b416t-c849594cecb50f54e0c4a97ce35eb153a43e6711dbf5f39b3d1a9f07a61137b43 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
| ORCID | 0000-0002-5687-1564 0000-0003-4520-7163 |
| PMID | 35523534 |
| PQID | 2666539836 |
| PQPubID | 2041039 |
| PageCount | 4 |
| ParticipantIDs | proquest_miscellaneous_2661088001 proquest_journals_2680631507 proquest_journals_2666539836 pubmed_primary_35523534 crossref_citationtrail_10_1136_bjophthalmol_2022_321141 crossref_primary_10_1136_bjophthalmol_2022_321141 bmj_journals_10_1136_bjophthalmol_2022_321141 |
| PublicationCentury | 2000 |
| PublicationDate | 2022-07-01 |
| PublicationDateYYYYMMDD | 2022-07-01 |
| PublicationDate_xml | – month: 07 year: 2022 text: 2022-07-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | BMA House, Tavistock Square, London, WC1H 9JR |
| PublicationPlace_xml | – name: BMA House, Tavistock Square, London, WC1H 9JR – name: England – name: London |
| PublicationTitle | British journal of ophthalmology |
| PublicationTitleAbbrev | Br J Ophthalmol |
| PublicationTitleAlternate | Br J Ophthalmol |
| PublicationYear | 2022 |
| Publisher | BMJ Publishing Group Ltd BMJ Publishing Group LTD |
| Publisher_xml | – name: BMJ Publishing Group Ltd – name: BMJ Publishing Group LTD |
| References | Brown, Mann, Ryder (R6) 2020 Gaskin, Pershing, Cole (R27) 2016; 26 Naseri, Kafi, Skamene (R14) 2021; 120 Liu, Shorstein, Amsden (R28) 2017; 26 Caliskan, Bryson, Narayanan (R12) 2017; 356 Stein, Rahman, Andrews (R24) 2019; 137 Elkins, Chun (R3) 2020; 5 Tan, Bacchi, Casson (R25) 2020; 48 Turing (R2) 2004 Wu, Chen, Yun (R29) 2021; 128 Cho, van Merrienboer, Gulcehre (R8) 2014 Korngiebel, Mooney (R13) 2021; 4 Floridi, Chiriatti (R5) 2020; 30 Smith, Johnson, Russell (R26) 2008; 17 Radford, Kim, Hallacy (R34) 2021 Guida, Mauri (R1) 1986; 74 Zheng, Luo, Mercado (R23) 2019; 47 Faes, Wagner, Fu (R31) 2019; 1 Mularski, White-Chu, Overbay (R19) 2006; 21 Keane, Topol (R32) 2021; 397 Ramesh, Pavlov, Goh (R35) 2021 Yang, Ng, Foo (R20) 2021; 32 Peissig, Rasmussen, Berg (R21) 2012; 19 Beck, Vinegra, Dankwa-Mullan (R15) 2017; 35 Coghill (R18) 2010; 50 Mossey (R17) 2011; 469 Crampton (R30) 2020; 33 2023062822101722000_106.7.889.15 Liu (2023062822101722000_106.7.889.28) 2017; 26 2023062822101722000_106.7.889.16 2023062822101722000_106.7.889.35 2023062822101722000_106.7.889.36 2023062822101722000_106.7.889.11 2023062822101722000_106.7.889.33 2023062822101722000_106.7.889.12 2023062822101722000_106.7.889.34 2023062822101722000_106.7.889.10 Tan (2023062822101722000_106.7.889.25) 2020; 48 2023062822101722000_106.7.889.19 2023062822101722000_106.7.889.17 2023062822101722000_106.7.889.18 Guida (2023062822101722000_106.7.889.1) 1986; 74 Korngiebel (2023062822101722000_106.7.889.13) 2021; 4 Naseri (2023062822101722000_106.7.889.14) 2021; 120 2023062822101722000_106.7.889.26 2023062822101722000_106.7.889.21 Yang (2023062822101722000_106.7.889.20) 2021; 32 Crampton (2023062822101722000_106.7.889.30) 2020; 33 2023062822101722000_106.7.889.29 2023062822101722000_106.7.889.3 Faes (2023062822101722000_106.7.889.31) 2019; 1 2023062822101722000_106.7.889.2 2023062822101722000_106.7.889.5 2023062822101722000_106.7.889.4 2023062822101722000_106.7.889.7 2023062822101722000_106.7.889.6 2023062822101722000_106.7.889.9 Stein (2023062822101722000_106.7.889.24) 2019; 137 2023062822101722000_106.7.889.8 Barrows Jr (2023062822101722000_106.7.889.22) 2000 Zheng (2023062822101722000_106.7.889.23) 2019; 47 Gaskin (2023062822101722000_106.7.889.27) 2016; 26 Keane (2023062822101722000_106.7.889.32) 2021; 397 |
| References_xml | – year: 2021 ident: R35 article-title: Zero-Shot Text-to-Image Generation [Internet] publication-title: arXiv – volume: 356 start-page: 183 year: 2017 ident: R12 article-title: Semantics derived automatically from language corpora contain human-like biases publication-title: Science doi: 10.1126/science.aal4230 – volume: 21 start-page: 607 year: 2006 ident: R19 article-title: Measuring pain as the 5th vital sign does not improve quality of pain management publication-title: J Gen Intern Med doi: 10.1111/j.1525-1497.2006.00415.x – volume: 137 start-page: 491 year: 2019 ident: R24 article-title: Evaluation of an algorithm for identifying ocular conditions in electronic health record data publication-title: JAMA Ophthalmol doi: 10.1001/jamaophthalmol.2018.7051 – volume: 120 year: 2021 ident: R14 article-title: Development of a generalizable natural language processing pipeline to extract physician-reported pain from clinical reports: generated using publicly-available datasets and tested on institutional clinical reports for cancer patients with bone metastases publication-title: J Biomed Inform doi: 10.1016/j.jbi.2021.103864 – year: 2004 ident: R2 article-title: Computing Machinery and Intelligence (1950) [Internet] publication-title: The Essential Turing – volume: 48 start-page: 169 year: 2020 ident: R25 article-title: Triaging ophthalmology outpatient referrals with machine learning: a pilot study publication-title: Clin Exp Ophthalmol doi: 10.1111/ceo.13666 – volume: 32 start-page: 397 year: 2021 ident: R20 article-title: Deep learning-based natural language processing in ophthalmology: applications, challenges and future directions publication-title: Curr Opin Ophthalmol doi: 10.1097/ICU.0000000000000789 – volume: 26 start-page: 378 year: 2017 ident: R28 article-title: Natural language processing to ascertain two key variables from operative reports in ophthalmology publication-title: Pharmacoepidemiol Drug Saf doi: 10.1002/pds.4149 – volume: 397 year: 2021 ident: R32 article-title: AI-facilitated health care requires education of clinicians publication-title: Lancet doi: 10.1016/S0140-6736(21)00722-4 – volume: 4 start-page: 93 year: 2021 ident: R13 article-title: Considering the possibilities and pitfalls of generative Pre-trained transformer 3 (GPT-3) in healthcare delivery publication-title: NPJ Digit Med doi: 10.1038/s41746-021-00464-x – volume: 5 year: 2020 ident: R3 article-title: Can GPT-3 pass a writer’s Turing test? publication-title: J Cult Anal doi: 10.22148/001c.17212 – year: 2020 ident: R6 article-title: Language Models are Few-Shot Learners [Internet] publication-title: arXiv [cs.CL] – volume: 19 start-page: 225 year: 2012 ident: R21 article-title: Importance of multi-modal approaches to effectively identify cataract cases from electronic health records publication-title: J Am Med Inform Assoc doi: 10.1136/amiajnl-2011-000456 – year: 2014 ident: R8 article-title: Learning Phrase Representations using RNN Encoder-Decoder for Statistical Machine Translation [Internet] publication-title: arXiv – volume: 1 start-page: e232 year: 2019 ident: R31 article-title: Automated deep learning design for medical image classification by health-care professionals with no coding experience: a feasibility study publication-title: Lancet Digit Health doi: 10.1016/S2589-7500(19)30108-6 – volume: 469 start-page: 1859 year: 2011 ident: R17 article-title: Defining racial and ethnic disparities in pain management publication-title: Clin Orthop Relat Res doi: 10.1007/s11999-011-1770-9 – volume: 30 start-page: 681 year: 2020 ident: R5 article-title: GPT-3: its nature, scope, limits, and consequences publication-title: Minds Mach doi: 10.1007/s11023-020-09548-1 – volume: 47 start-page: 7 year: 2019 ident: R23 article-title: Using natural language processing for identification of herpes zoster ophthalmicus cases to support population-based study publication-title: Clin Exp Ophthalmol doi: 10.1111/ceo.13340 – volume: 50 start-page: 1531 year: 2010 ident: R18 article-title: Individual differences in the subjective experience of pain: new insights into mechanisms and models publication-title: Headache doi: 10.1111/j.1526-4610.2010.01763.x – volume: 35 year: 2017 ident: R15 article-title: Cognitive technology addressing optimal cancer clinical trial matching and protocol feasibility in a community cancer practice publication-title: J Clin Orthod doi: 10.1200/JCO.2017.35.15_suppl.6501 – volume: 128 start-page: 942 year: 2021 ident: R29 article-title: Effectiveness of an ophthalmic hospital-based virtual service during the COVID-19 pandemic publication-title: Ophthalmology doi: 10.1016/j.ophtha.2020.10.012 – volume: 26 start-page: 328 year: 2016 ident: R27 article-title: Predictive modeling of risk factors and complications of cataract surgery publication-title: Eur J Ophthalmol doi: 10.5301/ejo.5000706 – volume: 17 start-page: 1277 year: 2008 ident: R26 article-title: Lower visual acuity predicts worse utility values among patients with type 2 diabetes publication-title: Qual Life Res doi: 10.1007/s11136-008-9399-1 – year: 2021 ident: R34 article-title: Learning transferable visual models from natural language supervision publication-title: arXiv – volume: 33 start-page: 34 year: 2020 ident: R30 article-title: Ambient virtual scribes: Mutuo health's AutoScribe as a case study of artificial intelligence-based technology publication-title: Healthc Manage Forum doi: 10.1177/0840470419872775 – volume: 74 start-page: 1026 year: 1986 ident: R1 article-title: Evaluation of natural language processing systems: issues and approaches publication-title: Proc IEEE Inst Electr Electron Eng doi: 10.1109/PROC.1986.13580 – ident: 2023062822101722000_106.7.889.2 doi: 10.1093/oso/9780198250791.003.0017 – volume: 4 start-page: 93 year: 2021 ident: 2023062822101722000_106.7.889.13 article-title: Considering the possibilities and pitfalls of generative Pre-trained transformer 3 (GPT-3) in healthcare delivery publication-title: NPJ Digit Med doi: 10.1038/s41746-021-00464-x – volume: 33 start-page: 34 year: 2020 ident: 2023062822101722000_106.7.889.30 article-title: Ambient virtual scribes: Mutuo health's AutoScribe as a case study of artificial intelligence-based technology publication-title: Healthc Manage Forum doi: 10.1177/0840470419872775 – ident: 2023062822101722000_106.7.889.9 – ident: 2023062822101722000_106.7.889.18 doi: 10.1111/j.1526-4610.2010.01763.x – ident: 2023062822101722000_106.7.889.11 – ident: 2023062822101722000_106.7.889.4 – ident: 2023062822101722000_106.7.889.6 – ident: 2023062822101722000_106.7.889.26 doi: 10.1007/s11136-008-9399-1 – ident: 2023062822101722000_106.7.889.33 – ident: 2023062822101722000_106.7.889.35 – volume: 47 start-page: 7 year: 2019 ident: 2023062822101722000_106.7.889.23 article-title: Using natural language processing for identification of herpes zoster ophthalmicus cases to support population-based study publication-title: Clin Exp Ophthalmol doi: 10.1111/ceo.13340 – volume: 1 start-page: e232 year: 2019 ident: 2023062822101722000_106.7.889.31 article-title: Automated deep learning design for medical image classification by health-care professionals with no coding experience: a feasibility study publication-title: Lancet Digit Health doi: 10.1016/S2589-7500(19)30108-6 – volume: 26 start-page: 378 year: 2017 ident: 2023062822101722000_106.7.889.28 article-title: Natural language processing to ascertain two key variables from operative reports in ophthalmology publication-title: Pharmacoepidemiol Drug Saf doi: 10.1002/pds.4149 – ident: 2023062822101722000_106.7.889.12 doi: 10.1126/science.aal4230 – volume: 120 year: 2021 ident: 2023062822101722000_106.7.889.14 article-title: Development of a generalizable natural language processing pipeline to extract physician-reported pain from clinical reports: generated using publicly-available datasets and tested on institutional clinical reports for cancer patients with bone metastases publication-title: J Biomed Inform doi: 10.1016/j.jbi.2021.103864 – volume: 397 year: 2021 ident: 2023062822101722000_106.7.889.32 article-title: AI-facilitated health care requires education of clinicians publication-title: Lancet doi: 10.1016/S0140-6736(21)00722-4 – ident: 2023062822101722000_106.7.889.21 doi: 10.1136/amiajnl-2011-000456 – ident: 2023062822101722000_106.7.889.7 doi: 10.1109/MICC.2017.8311752 – ident: 2023062822101722000_106.7.889.16 – volume: 74 start-page: 1026 year: 1986 ident: 2023062822101722000_106.7.889.1 article-title: Evaluation of natural language processing systems: issues and approaches publication-title: Proc IEEE Inst Electr Electron Eng doi: 10.1109/PROC.1986.13580 – ident: 2023062822101722000_106.7.889.8 doi: 10.3115/v1/D14-1179 – ident: 2023062822101722000_106.7.889.10 – ident: 2023062822101722000_106.7.889.15 doi: 10.1200/JCO.2017.35.15_suppl.6501 – ident: 2023062822101722000_106.7.889.19 doi: 10.1111/j.1525-1497.2006.00415.x – volume: 32 start-page: 397 year: 2021 ident: 2023062822101722000_106.7.889.20 article-title: Deep learning-based natural language processing in ophthalmology: applications, challenges and future directions publication-title: Curr Opin Ophthalmol doi: 10.1097/ICU.0000000000000789 – ident: 2023062822101722000_106.7.889.17 doi: 10.1007/s11999-011-1770-9 – ident: 2023062822101722000_106.7.889.34 – ident: 2023062822101722000_106.7.889.36 – volume: 48 start-page: 169 year: 2020 ident: 2023062822101722000_106.7.889.25 article-title: Triaging ophthalmology outpatient referrals with machine learning: a pilot study publication-title: Clin Exp Ophthalmol doi: 10.1111/ceo.13666 – volume: 26 start-page: 328 year: 2016 ident: 2023062822101722000_106.7.889.27 article-title: Predictive modeling of risk factors and complications of cataract surgery publication-title: Eur J Ophthalmol doi: 10.5301/ejo.5000706 – ident: 2023062822101722000_106.7.889.29 doi: 10.1016/j.ophtha.2020.10.012 – volume: 137 start-page: 491 year: 2019 ident: 2023062822101722000_106.7.889.24 article-title: Evaluation of an algorithm for identifying ocular conditions in electronic health record data publication-title: JAMA Ophthalmol doi: 10.1001/jamaophthalmol.2018.7051 – ident: 2023062822101722000_106.7.889.5 doi: 10.1007/s11023-020-09548-1 – start-page: 51 year: 2000 ident: 2023062822101722000_106.7.889.22 article-title: Limited parsing of notational text visit notes: ad-hoc vs. NLP approaches – ident: 2023062822101722000_106.7.889.3 doi: 10.22148/001c.17212 |
| SSID | ssj0002617 |
| Score | 2.6338732 |
| SecondaryResourceType | review_article |
| Snippet | Natural language processing (NLP) is a subfield of machine intelligence focused on the interaction of human language with computer systems. NLP has recently... |
| SourceID | proquest pubmed crossref bmj |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 889 |
| SubjectTerms | Cataracts Datasets Diagnostic tests/Investigation Electronic health records Gender Humans Internet Language instruction Medical diagnosis Medical personnel Medical research Natural Language Processing Ophthalmology Pain management Patients Review Telemedicine |
| Title | New meaning for NLP: the trials and tribulations of natural language processing with GPT-3 in ophthalmology |
| URI | https://bjo.bmj.com/content/106/7/889.full https://www.ncbi.nlm.nih.gov/pubmed/35523534 https://www.proquest.com/docview/2666539836 https://www.proquest.com/docview/2680631507 https://www.proquest.com/docview/2661088001 |
| Volume | 106 |
| WOSCitedRecordID | wos000793336000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1468-2079 dateEnd: 20250609 omitProxy: false ssIdentifier: ssj0002617 issn: 0007-1161 databaseCode: 7X7 dateStart: 19220101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1468-2079 dateEnd: 20250609 omitProxy: false ssIdentifier: ssj0002617 issn: 0007-1161 databaseCode: BENPR dateStart: 19220101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB71gRAXKO-FtjISV6tJbccOFwRVH4eyWqGC9hbZjk1bdpOlu0Xi3zN2nN1yKKrUSy6WHSsznvlmPJkP4L2MPUnygnomPOXWKKp8zSh6Tp05VTMeWRS-n8rhUI3H5Sgl3OaprLK3idFQ160NOfI9dCShi6pixcfZLxpYo8LtaqLQWIfNQJsd9FyOlwFX7DbewV9JcT95X8nDij1z2c7OF-d6Mm0nqCmhpB1DocALv26ml_86qVuQZ_RAR0_uu_cteJywJ_nUKctTWHPNM3j4Jd2uP4efaPHI1OmQKiEIZsnwdPSBIEIkkdtjTnRTk8iQlQroSOtJ7AyKq_aJTzLrfj0Ia4QkLzkenVFGLhqy-hTtjz8v4NvR4dnBCU1kDNQgZltQqzCUKrl11ojMC-4yy3UprWMCzb1gmjNXyDyvjReelYbVuS59JnWB31sazl7CRtM27jUQxZ203mm-7zC8CxGjLoXJlBbMlyiFAVCUQZUO07yKcQorqpsyq4LMqk5mA5C9tCqbOpsHgo3JHWbmy5mzrrvHHeZs90JebXEl4VuGFULBgL0H8G45jAc53M7oxrXXcYkcTT7ChgG86vRsuScEhftMMP7m_-9-C4-iKsdq4m3YWFxdux14YH8vLuZXu_FsxKfahc3Ph8PR17-u6RfE |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3Pb9MwFH7aBgIu4zd0DDASHK3FtR0nSGhCwNi0ruqhoN4yx7HZRpuUtQPtn-Jv3LOTtHAY2mUHzpadOP783vfZL-8BvFYhJwmLqePSUWHyhCau4BQ9p45sUnARqih87al-PxmN0sEK_G7_hfFhla1NDIa6qIw_I99CR-KzqCY83p7-oL5qlL9dbUto1LDYt-e_ULLN3u19xPV90-3ufBp-2KVNVQGaI_mYU5OgJkiFsSaXkZPCRkboVBnLJdotybXgNlaMFbmTjqc5L5hOXaR0zBhXueA47ircQDuuvNhTo4XAC9nNa7qtKM6ftZFDPN7KT6rp0fxIjyfVGJHpQ-hRevk69Kv55ORvp3gJ0w0eb-fu__at7sF6w63J-3oz3IcVWz6AWwdN9MBD-I4WnUys9kdBBMk66fcGbwkyYBJql8yILgsSKoA1AYKkciRkPsVR24NdMq1_rfBj-ENs8nkwpJwcl2T56atv54_gy7VM9TGslVVpnwJJhFXGWS26FuWrV8Q6lXmUaMldiqveAYprnjXGYpYFHcbj7E-MZB4jWY2RDqgWHZlpMrf7AiLjK_Rki57TOnvJFfpstqBavuISUZc0J0h1vbbowKtFMxoqf_ukS1udhSEYujSkRR14UuN68U5IertccrHx72e_hNu7w4Ne1tvr7z-DO2EbhcjpTVibn57Z53DT_Jwfz05fhH1J4PC6wX0ByU9yYg |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB61W1Rx4Q1dKGAkOFqN106cICEEtAtVlyhCBfUWHMfug91k6W5B_Wv8OsZOsguHol564GzZsePPM9-MxzMAz6XPScIianloqdBFTGNbcoqaUwUmLrnwVRS-jGSaxgcHSbYCv7q3MC6sspOJXlCXtXY-8i1UJC6LasyjLduGRWTbw9fT79RVkHI3rV05jQYie-b8J5pvs1e727jXLwaD4c7-uw-0rTBACyQic6pjtA8SoY0uwsCGwgRaqERqw0OUYSFXgptIMlYWNrQ8KXjJVGIDqSLGuCwEx3FXYU0iyRA9WHu7k2afFnrA5TpvyLek-DdYF0eEKyhO6unR_EiNJ_UYceoC6tEQc1XpV4vJyd8q8gLe6_Xf8Ob__OduwY2WdZM3zTG5DSumugPrH9u4grvwDWU9mRjlnEQEaTxJR9lLgtyY-KomM6KqkvjaYG3oIKkt8TlRcdTO5UumzaMLN4Zzb5P32T7l5Lgiy22oD8_vwecrWep96FV1ZTaAxMJIbY0SA4OGrbOVVRIWQaxCbhNEQB8o7n_eipFZ7i00HuV_4iV3eMkbvPRBdkjJdZvT3ZUWGV-iJ1v0nDZ5TS7RZ7MD2HKKS3Rd0BwjCXZWRx-eLZpRhLl7KVWZ-swPwVDZIWHqw4MG44s5IR0e8JCLh__-9lNYR0zno9107xFc9yfKh1RvQm9-emYewzX9Y348O33SHlICX68a3b8BimR8gg |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=New+meaning+for+NLP%3A+the+trials+and+tribulations+of+natural+language+processing+with+GPT-3+in+ophthalmology&rft.jtitle=British+journal+of+ophthalmology&rft.au=Nath%2C+Siddharth&rft.au=Abdullah%2C+Marie&rft.au=Ellershaw%2C+Simon&rft.au=Korot%2C+Edward&rft.date=2022-07-01&rft.pub=BMJ+Publishing+Group+LTD&rft.issn=0007-1161&rft.eissn=1468-2079&rft.spage=bjophthalmol-2022-321141&rft_id=info:doi/10.1136%2Fbjophthalmol-2022-321141&rft.externalDBID=HAS_PDF_LINK |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0007-1161&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0007-1161&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0007-1161&client=summon |