Research on the Prediction of Health Status of the Container Gantry Crane Energy Systems

Jia, H.; Liu, H., and Yang, Y., 2015. The research on the prediction of health status of the container gantry crane energy systems. In this paper, the remaining capacity of lead-acid batteries is used to evaluate the health status of RTG energy systems. A LS-SVM model was established for predicting...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Journal of coastal research Ročník 73; číslo sp1; s. 139 - 145
Hlavní autoři: Jia, Hongxia, Liu, Haiwei, Yang, Yang
Médium: Journal Article
Jazyk:angličtina
Vydáno: Coastal Education and Research Foundation 01.12.2015
Coastal Education & Research Foundation (CERF)
Témata:
ISSN:0749-0208, 1551-5036
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Jia, H.; Liu, H., and Yang, Y., 2015. The research on the prediction of health status of the container gantry crane energy systems. In this paper, the remaining capacity of lead-acid batteries is used to evaluate the health status of RTG energy systems. A LS-SVM model was established for predicting the remaining capacity of batteries, with the PSO-BP algorithm optimizing the parameters in the LS-SVM model. Using the trained LS-SVM model, the remaining capacity of batteries and the degradation trend of battery capacity with time are predicted. Compared with measured results, the predicted results show that the LS-SVM model can accurately predict the remaining capacity of lead-acid batteries.
ISSN:0749-0208
1551-5036
DOI:10.2112/SI73-025.1