Research on the Prediction of Health Status of the Container Gantry Crane Energy Systems

Jia, H.; Liu, H., and Yang, Y., 2015. The research on the prediction of health status of the container gantry crane energy systems. In this paper, the remaining capacity of lead-acid batteries is used to evaluate the health status of RTG energy systems. A LS-SVM model was established for predicting...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of coastal research Jg. 73; H. sp1; S. 139 - 145
Hauptverfasser: Jia, Hongxia, Liu, Haiwei, Yang, Yang
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Coastal Education and Research Foundation 01.12.2015
Coastal Education & Research Foundation (CERF)
Schlagworte:
ISSN:0749-0208, 1551-5036
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Jia, H.; Liu, H., and Yang, Y., 2015. The research on the prediction of health status of the container gantry crane energy systems. In this paper, the remaining capacity of lead-acid batteries is used to evaluate the health status of RTG energy systems. A LS-SVM model was established for predicting the remaining capacity of batteries, with the PSO-BP algorithm optimizing the parameters in the LS-SVM model. Using the trained LS-SVM model, the remaining capacity of batteries and the degradation trend of battery capacity with time are predicted. Compared with measured results, the predicted results show that the LS-SVM model can accurately predict the remaining capacity of lead-acid batteries.
AbstractList Jia, H.; Liu, H., and Yang, Y., 2015. The research on the prediction of health status of the container gantry crane energy systems. In this paper, the remaining capacity of lead-acid batteries is used to evaluate the health status of RTG energy systems. A LS-SVM model was established for predicting the remaining capacity of batteries, with the PSO-BP algorithm optimizing the parameters in the LS-SVM model. Using the trained LS-SVM model, the remaining capacity of batteries and the degradation trend of battery capacity with time are predicted. Compared with measured results, the predicted results show that the LS-SVM model can accurately predict the remaining capacity of lead-acid batteries.
In this paper, the remaining capacity of lead-acid batteries is used to evaluate the health status of RTG energy systems. A LS-SVM model was established for predicting the remaining capacity of batteries, with the PSO-BP algorithm optimizing the parameters in the LS-SVM model. Using the trained LS-SVM model, the remaining capacity of batteries and the degradation trend of battery capacity with time are predicted. Compared with measured results, the predicted results show that the LS-SVM model can accurately predict the remaining capacity of lead-acid batteries.
Author Liu, Haiwei
Yang, Yang
Jia, Hongxia
Author_xml – sequence: 1
  givenname: Hongxia
  surname: Jia
  fullname: Jia, Hongxia
  organization: Logistics Engineering College, Shanghai maritime University, Shanghai 201306, China
– sequence: 2
  givenname: Haiwei
  surname: Liu
  fullname: Liu, Haiwei
  organization: Logistics Engineering College, Shanghai maritime University, Shanghai 201306, China
– sequence: 3
  givenname: Yang
  surname: Yang
  fullname: Yang, Yang
  organization: Logistics Engineering College, Shanghai maritime University, Shanghai 201306, China
BookMark eNp9UU1LAzEQDVLBtnrxLuQowmo-NrvZoyy1LRQUq-BtSdJZm9JmJYmH_fdmqXgQ8TTM-xgebyZo5DoHCF1ScssoZXfrZckzwsQtPUFjKgTNBOHFCI1JmVeJIPIMTULYEUILmZdj9PYMAZQ3W9w5HLeAnzxsrIk2rV2LF6D2cYvXUcXPMACDpO5cVNaBx3Plou9x7ZUDPEvIe4_XfYhwCOfotFX7ABffc4peH2Yv9SJbPc6X9f0q00wWMZMcKqlMAYU0AEyLkvKcAuOS6AqgZKRkXOeEKlXpNgduTJXQTaWkopq3fIrI8a7xXQge2sbYlDblj17ZfUNJMzTTDM00qZmGJsvNL8uHtwfl-7_FV0fxLsTO_yhzLnPOhEj89ZHXtku_-O_UF1JdfGw
CitedBy_id crossref_primary_10_1016_j_ymssp_2017_11_036
ContentType Journal Article
Copyright 2015 Coastal Education and Research Foundation
2014 Coastal Education & Research Foundation (CERF)
Copyright_xml – notice: 2015 Coastal Education and Research Foundation
– notice: 2014 Coastal Education & Research Foundation (CERF)
DBID AAYXX
CITATION
DOI 10.2112/SI73-025.1
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Geography
Ecology
EISSN 1551-5036
EndPage 145
ExternalDocumentID 10_2112_SI73_025_1
43843255
10.2112/SI73-025.1
GroupedDBID -JH
.4S
.DC
29K
2AX
5GY
7XC
88I
8CJ
8FE
8FG
8FH
AAHKG
AAPSS
ABBHK
ABDBF
ABJCF
ABPLY
ABTLG
ABUWG
ABXSQ
ACGOD
ACHIC
ACIHN
ACIWK
ACPRK
ACUHS
ADHSS
ADULT
AEAQA
AENEX
AEPYG
AEUPB
AEUYN
AFAZZ
AFFHD
AFFIJ
AFKRA
AFNWH
AFRAH
AGUYK
AKPMI
ALMA_UNASSIGNED_HOLDINGS
AQVQM
ARCSS
AS~
ATCPS
AZQEC
B0M
BANNL
BENPR
BGLVJ
BHPHI
BKSAR
BPHCQ
CAG
CBGCD
CCPQU
COF
CS3
D-I
D1J
DC7
DU5
DWQXO
EAD
EAP
EBD
EBS
EDH
EDO
EJD
EMK
EPL
ESX
GNUQQ
GTFYD
H13
HCIFZ
HTVGU
I-F
IL9
IPSME
JAAYA
JBMMH
JBS
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JQ3
JST
L6V
LK5
M2P
M7R
M7S
ML.
MV1
NVHAQ
OK1
OVD
PATMY
PCBAR
PHGZM
PHGZT
PQ0
PQGLB
PQQKQ
PROAC
PTHSS
PYCSY
Q5J
QF4
QM1
QN7
QO4
RBO
ROL
SA0
SJN
TAE
TEORI
TUS
UNMZH
VJK
Y3D
~8M
~EF
AAYXX
CITATION
ID FETCH-LOGICAL-b286t-83e98ac6e68cee2b571341e2380b9ee720723b401aa9bf4e3cc9e72d9a8a1b3f3
IEDL.DBID PQ0
ISICitedReferencesCount 1
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000351538400026&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0749-0208
IngestDate Sat Nov 29 04:25:39 EST 2025
Tue Nov 18 22:20:15 EST 2025
Thu Jul 03 21:07:29 EDT 2025
Wed Nov 26 08:08:43 EST 2025
IsPeerReviewed true
IsScholarly true
Issue sp1
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-b286t-83e98ac6e68cee2b571341e2380b9ee720723b401aa9bf4e3cc9e72d9a8a1b3f3
PageCount 7
ParticipantIDs crossref_citationtrail_10_2112_SI73_025_1
crossref_primary_10_2112_SI73_025_1
jstor_primary_43843255
bioone_primary_10_2112_SI73_025_1
PublicationCentury 2000
PublicationDate 2015-12-01
PublicationDateYYYYMMDD 2015-12-01
PublicationDate_xml – month: 12
  year: 2015
  text: 2015-12-01
  day: 01
PublicationDecade 2010
PublicationTitle Journal of coastal research
PublicationYear 2015
Publisher Coastal Education and Research Foundation
Coastal Education & Research Foundation (CERF)
Publisher_xml – name: Coastal Education and Research Foundation
– name: Coastal Education & Research Foundation (CERF)
SSID ssj0016847
Score 2.0868032
Snippet Jia, H.; Liu, H., and Yang, Y., 2015. The research on the prediction of health status of the container gantry crane energy systems. In this paper, the...
In this paper, the remaining capacity of lead-acid batteries is used to evaluate the health status of RTG energy systems. A LS-SVM model was established for...
SourceID crossref
jstor
bioone
SourceType Enrichment Source
Index Database
Publisher
StartPage 139
SubjectTerms Artificial neural networks
Batteries
Energy
energy systems
Error rates
Gantry cranes
Health status
ls-svm model
Marine Resources and Biodiversity
Mathematical independent variables
Mathematical vectors
Modeling
Parametric models
pso-bp algorithm
The container gantry crane
the prediction of the health status
Title Research on the Prediction of Health Status of the Container Gantry Crane Energy Systems
URI http://www.bioone.org/doi/abs/10.2112/SI73-025.1
https://www.jstor.org/stable/43843255
Volume 73
WOSCitedRecordID wos000351538400026&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVADV
  databaseName: BioOne Complete
  customDbUrl:
  eissn: 1551-5036
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0016847
  issn: 0749-0208
  databaseCode: PQ0
  dateStart: 20040101
  isFulltext: true
  titleUrlDefault: https://bioone.org/browse/title
  providerName: BioOne
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF5KVfTio1qsL1b04iGaZpPs7lFKfYCUig96C7vbXSxII30I_ffObNKiIiJewyRZZhK-GWa--Qg5dU7HBpAhiLjQQaxVGCiZukAk2nEkQ3LP436-452O6PVkt0Kacy4MjlXqQZ4PrW_j43-ttBcfgUoluni45dh2TM6h4FkCbElRraF7Hy4aB6nwmmIAjDJA_cliI-m3ewFtind8AaPP84geXa42_nGuTbJeppL0soj9FqnYYY2stP0a6lmNrJb65i-zbdKbD9jRfEgh5aPdETZoMCg0d7TgIlFMPKdjvIAmuLdKITWQXitUH6EtgDVL254sSMtN5zvk6ar92LoJSk2FQEcinQSCWSmUSW0qAB4jnSCXtGkBuEMtreVRyCOmoehSSmoXW2aMhKt9qYRqauZYnVSH4IVdQlnfKNGXUWJ4H9K6UPHEpi7S3DAnlJMNclx4LHsrFmdkUHCgtzL0VgbeypoNcjYPQGbKpeSojfH6o-3Jwva3J9Z9HBcmMRMxg8Jp7w_H2SdrkBAlxbjKAalORlN7SJbN-2QwHh35L-0DYAzOpw
linkProvider BioOne
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS-NAEB_Er_PFb7F-rujLPUTTbJLdfRRtVZRS0Tv6Fna3u1zhaI_aCv73zmzSonKI-BomyTKT8Jth5jc_gBPvTWoRGaJESBOlRseRVrmPZGa8IDKkCDzu33ei1ZKdjmrPQH3ChaGxStMbDPoutPHpv9YmiI9gpZKcPdwIajtmp1jwzGVYuNMUX_s-njYOchk0xRAYVUT6k-VG0g_3ItqU73gHRm_nEQO6NFe-ca5VWK5SSXZexn4NZlx_HRYaYQ31yzr8qPTN_7xsQGcyYMcGfYYpH2sPqUFDQWEDz0ouEqPEc_xEF8iE9lZpogayK03qI-wCYc2xRiALsmrT-Sb8ajYeL66jSlMhMonMR5HkTkltc5dLhMfEZMQlrTsE7tgo50QSi4QbLLq0Vsanjlur8GpXaanrhnu-BbN99MI2MN61WnZVklnRxbQu1iJzuU-MsNxL7VUNjkqPFf_KxRkFFhzkrYK8VaC3inoNfk4CUNhqKTlpY_z9r-3x1PazJ26FOE5NUi5TjoXTzheOcwiL7ctmcXfTut2FJcyNsnJyZQ9mR8Ox24d5-zzqPQ0Pwkf3CkTz0S8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Research+on+the+Prediction+of+Health+Status+of+the+Container+Gantry+Crane+Energy+Systems&rft.jtitle=Journal+of+coastal+research&rft.au=Jia%2C+Hongxia&rft.au=Liu%2C+Haiwei&rft.au=Yang%2C+Yang&rft.date=2015-12-01&rft.pub=Coastal+Education+%26+Research+Foundation+%28CERF%29&rft.issn=0749-0208&rft.eissn=1551-5036&rft.spage=139&rft.epage=145&rft_id=info:doi/10.2112%2FSI73-025.1&rft.externalDocID=43843255
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0749-0208&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0749-0208&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0749-0208&client=summon