The replication of the human respiratory syncytial virus in a T cell line has multiple ineffective steps
Abstract Human respiratory syncytial virus is the most frequent cause of severe respiratory disease in children. The main targets of HRSV infection are epithelial cells of the respiratory tract and the great majority of the studies regarding HRSV infection are done in respiratory cells. Recently, th...
Saved in:
| Published in: | bioRxiv |
|---|---|
| Main Authors: | , , , , , , , , , , |
| Format: | Paper |
| Language: | English |
| Published: |
Cold Spring Harbor
Cold Spring Harbor Laboratory Press
28.12.2020
Cold Spring Harbor Laboratory |
| Edition: | 1.1 |
| Subjects: | |
| ISSN: | 2692-8205, 2692-8205 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Abstract Human respiratory syncytial virus is the most frequent cause of severe respiratory disease in children. The main targets of HRSV infection are epithelial cells of the respiratory tract and the great majority of the studies regarding HRSV infection are done in respiratory cells. Recently, the interest on respiratory virus infection of lymphoid cells has been growing, but details of the interaction of HRSV with lymphoid cells remain unknown. Therefore, this study was done to assess the relationship of HRSV with A3.01 cells, a CD4+ T cell line. We found by flow cytometry and fluorescent focus assay that A3.01 cells are susceptible but virtually not permissive to HRSV infection. De-quenching experiments revealed that the fusion process of HRSV in A3.01 cells is reduced in comparison to HEp-2 cells, an epithelial cell lineage. Quantification of viral RNA by qPCR determined that the replication of HRSV in A3.01 cells was modest. Western blot and quantitative flow cytometry analyses demonstrated that the production of HRSV proteins in A3.01 was significantly lower than in HEp-2 cells. Additionally, we found by fluorescence in situ hybridization that the inclusion body-associated granules (IBAG’s) are almost absent in HRSV inclusion bodies in A3.01 cells. We also assessed the intracellular trafficking of HRSV proteins and found that HRSV proteins co-localized partially with the secretory pathway in A3.01 cells, but these HRSV proteins and viral filaments are present only scarcely at the plasma membrane. HRSV infection of A3.01 CD4+ T cells is virtually unproductive as compared to HEp-2 cells, with virion production hampered by low fusion, hypofunctional inclusion bodies, altered trafficking of viral proteins to the plasma membrane. |
|---|---|
| AbstractList | Human respiratory syncytial virus is the most frequent cause of severe respiratory disease in children. The main targets of HRSV infection are epithelial cells of the respiratory tract and the great majority of the studies regarding HRSV infection are done in respiratory cells. Recently, the interest on respiratory virus infection of lymphoid cells has been growing, but details of the interaction of HRSV with lymphoid cells remain unknown. Therefore, this study was done to assess the relationship of HRSV with A3.01 cells, a CD4+ T cell line. We found by flow cytometry and fluorescent focus assay that A3.01 cells are susceptible but virtually not permissive to HRSV infection. De-quenching experiments revealed that the fusion process of HRSV in A3.01 cells is reduced in comparison to HEp-2 cells, an epithelial cell lineage. Quantification of viral RNA by qPCR determined that the replication of HRSV in A3.01 cells was modest. Western blot and quantitative flow cytometry analyses demonstrated that the production of HRSV proteins in A3.01 was significantly lower than in HEp-2 cells. Additionally, we found by fluorescence in situ hybridization that the inclusion body-associated granules (IBAG’s) are almost absent in HRSV inclusion bodies in A3.01 cells. We also assessed the intracellular trafficking of HRSV proteins and found that HRSV proteins co-localized partially with the secretory pathway in A3.01 cells, but these HRSV proteins and viral filaments are present only scarcely at the plasma membrane. HRSV infection of A3.01 CD4+ T cells is virtually unproductive as compared to HEp-2 cells, with virion production hampered by low fusion, hypofunctional inclusion bodies, altered trafficking of viral proteins to the plasma membrane. Abstract Human respiratory syncytial virus is the most frequent cause of severe respiratory disease in children. The main targets of HRSV infection are epithelial cells of the respiratory tract and the great majority of the studies regarding HRSV infection are done in respiratory cells. Recently, the interest on respiratory virus infection of lymphoid cells has been growing, but details of the interaction of HRSV with lymphoid cells remain unknown. Therefore, this study was done to assess the relationship of HRSV with A3.01 cells, a CD4+ T cell line. We found by flow cytometry and fluorescent focus assay that A3.01 cells are susceptible but virtually not permissive to HRSV infection. De-quenching experiments revealed that the fusion process of HRSV in A3.01 cells is reduced in comparison to HEp-2 cells, an epithelial cell lineage. Quantification of viral RNA by qPCR determined that the replication of HRSV in A3.01 cells was modest. Western blot and quantitative flow cytometry analyses demonstrated that the production of HRSV proteins in A3.01 was significantly lower than in HEp-2 cells. Additionally, we found by fluorescence in situ hybridization that the inclusion body-associated granules (IBAG’s) are almost absent in HRSV inclusion bodies in A3.01 cells. We also assessed the intracellular trafficking of HRSV proteins and found that HRSV proteins co-localized partially with the secretory pathway in A3.01 cells, but these HRSV proteins and viral filaments are present only scarcely at the plasma membrane. HRSV infection of A3.01 CD4+ T cells is virtually unproductive as compared to HEp-2 cells, with virion production hampered by low fusion, hypofunctional inclusion bodies, altered trafficking of viral proteins to the plasma membrane. |
| Author | Arruda, Eurico Mendes Viana, Rosa Maria Armando Moraes Ventura Vitti, Brenda Cristina Juliano De Paula Souza Murakami, Tomoyuki De Souza Cardoso, Ricardo Ana Carolina Lunardello Coelho Bruna Laís Santos De Jesus Pontelli, Marjorie C Ono, Akira |
| Author_xml | – sequence: 1 givenname: Ricardo surname: De Souza Cardoso fullname: De Souza Cardoso, Ricardo – sequence: 2 fullname: Ana Carolina Lunardello Coelho – sequence: 3 fullname: Bruna Laís Santos De Jesus – sequence: 4 givenname: Brenda surname: Vitti middlename: Cristina fullname: Vitti, Brenda Cristina – sequence: 5 fullname: Juliano De Paula Souza – sequence: 6 givenname: Rosa surname: Mendes Viana middlename: Maria fullname: Mendes Viana, Rosa Maria – sequence: 7 givenname: Marjorie surname: Pontelli middlename: C fullname: Pontelli, Marjorie C – sequence: 8 givenname: Tomoyuki surname: Murakami fullname: Murakami, Tomoyuki – sequence: 9 fullname: Armando Moraes Ventura – sequence: 10 givenname: Akira surname: Ono fullname: Ono, Akira – sequence: 11 givenname: Eurico surname: Arruda fullname: Arruda, Eurico |
| BookMark | eNpNkL1OwzAUhS1UJErpA7BZYmFJsW9sJxlRBQWpEkuZI9t1VFeuE2ynIm-PURmY7tE93_3RuUUz33uD0D0lK0oJfQICWcEK6hUDJgi_QnMQDRQ1ED77p2_QMsYjIQQaQcuKzdFhdzA4mMFZLZPtPe47nHLrMJ6kz0YcbJCpDxOOk9dTstLhsw1jxNZjiXdYG-ewsz6PyIhPo0t2cCa7puuMTvZscExmiHfoupMumuVfXaDP15fd-q3Yfmze18_bQlHCeFHLSglWccXVHoRSpTC0kzXley2FkIKwkoiKKS0yX2pGFNdEV1CBboyEfblAj5e9yvbh257bIdiTDFP7G1JLoYW6vYSU0YcLOoT-azQxtcd-DD5_1wInvKEV5HM_do5o-Q |
| Cites_doi | 10.1073/pnas.2434327100 10.1242/jcs.185702 10.1038/srep25806 10.1073/pnas.1400760111 10.1371/journal.pone.0040826 10.1371/journal.ppat.1003309 10.1073/pnas.78.2.1209 10.2217/fmb.12.132 10.1165/rcmb.2010-0121OC 10.1091/mbc.11.12.4105 10.1038/s41467-017-00732-z 10.1371/journal.ppat.1002734 10.1038/s41467-017-00655-9 10.1128/jvi.06274-11 10.1128/JVI.77.19.10670-10676.2003 10.1099/0022-1317-73-5-1177 10.1128/JVI.74.13.5911-5920.2000 10.1038/nm.2444 10.1007/s00418-013-1125-6 10.1093/nar/gkm246 10.1006/viro.1993.1366 10.1074/jbc.M114.560193 10.1128/JVI.03500-14 10.1128/jvi.03666-14 10.1371/journal.ppat.1007963 10.3390/v4123270 10.1371/journal.pone.0042136 10.1128/JVI.74.14.6442-6447.2000.Updated 10.1128/mBio.00270-11.Editor 10.1128/MCB.00156-06 10.1128/JVI.79.19.12528-12535.2005 10.1128/jvi.00986-09 10.1016/j.immuni.2017.01.010 10.1038/80833 10.1128/mBio.01869-20 10.1073/pnas.1915152117 10.1006/viro.2002.1540 10.1007/s00705-007-1048-4 10.1128/JVI.00215-12 10.1093/infdis/jix070 10.1099/0022-1317-68-9-2521 10.1371/journal.ppat.1005318 |
| ContentType | Paper |
| Copyright | 2020. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (“the License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2020, Posted by Cold Spring Harbor Laboratory |
| Copyright_xml | – notice: 2020. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (“the License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2020, Posted by Cold Spring Harbor Laboratory |
| DBID | 8FE 8FH ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO GNUQQ HCIFZ LK8 M7P PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS FX. |
| DOI | 10.1101/2020.12.28.424605 |
| DatabaseName | ProQuest SciTech Collection ProQuest Natural Science Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest SciTech Premium Collection Natural Science Collection Biological Science Collection ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central Korea ProQuest Central Student SciTech Collection (ProQuest) ProQuest Biological Science Collection Biological Science Database ProQuest One Academic ProQuest One Academic (New) ProQuest - Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China bioRxiv |
| DatabaseTitle | Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Biological Science Collection ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection Biological Science Database ProQuest SciTech Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Academic UKI Edition Natural Science Collection ProQuest Central Korea Biological Science Collection ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
| DatabaseTitleList | Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Biology |
| EISSN | 2692-8205 |
| Edition | 1.1 |
| ExternalDocumentID | 2020.12.28.424605v1 |
| Genre | Working Paper/Pre-Print |
| GroupedDBID | 8FE 8FH ABUWG AFKRA ALMA_UNASSIGNED_HOLDINGS AZQEC BBNVY BENPR BHPHI CCPQU DWQXO GNUQQ HCIFZ LK8 M7P NQS PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PROAC RHI FX. |
| ID | FETCH-LOGICAL-b1045-8a7b6475b5bd26bb36e1fa815dca66a60430674bc6b103c40b5c0c7272c9ea2d3 |
| IEDL.DBID | M7P |
| ISSN | 2692-8205 |
| IngestDate | Tue Jan 07 18:56:47 EST 2025 Fri Jul 25 09:17:30 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | false |
| IsScholarly | false |
| Language | English |
| License | This pre-print is available under a Creative Commons License (Attribution-NonCommercial-NoDerivs 4.0 International), CC BY-NC-ND 4.0, as described at http://creativecommons.org/licenses/by-nc-nd/4.0 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-b1045-8a7b6475b5bd26bb36e1fa815dca66a60430674bc6b103c40b5c0c7272c9ea2d3 |
| Notes | SourceType-Working Papers-1 ObjectType-Working Paper/Pre-Print-1 content type line 50 |
| ORCID | 0000-0001-7841-851X 0000-0003-2858-2076 0000-0002-0978-410X 0000-0002-2306-1098 0000-0001-5722-4142 0000-0003-3173-5977 |
| OpenAccessLink | https://www.proquest.com/docview/2505917204?pq-origsite=%requestingapplication% |
| PQID | 2505917204 |
| PQPubID | 2050091 |
| PageCount | 41 |
| ParticipantIDs | biorxiv_primary_2020_12_28_424605 proquest_journals_2505917204 |
| PublicationCentury | 2000 |
| PublicationDate | 20201228 |
| PublicationDateYYYYMMDD | 2020-12-28 |
| PublicationDate_xml | – month: 12 year: 2020 text: 20201228 day: 28 |
| PublicationDecade | 2020 |
| PublicationPlace | Cold Spring Harbor |
| PublicationPlace_xml | – name: Cold Spring Harbor |
| PublicationTitle | bioRxiv |
| PublicationYear | 2020 |
| Publisher | Cold Spring Harbor Laboratory Press Cold Spring Harbor Laboratory |
| Publisher_xml | – name: Cold Spring Harbor Laboratory Press – name: Cold Spring Harbor Laboratory |
| References | Förster, Maertens, Farrell, Bajorek (2020.12.28.424605v1.20) 2015; 89: JVI Levine, Kaliaber-Franco, Paradiso (2020.12.28.424605v1.6) 1987 Céspedes, Bueno, Ramírez, Gomez, Riquelme, Palavecino (2020.12.28.424605v1.23) 2014 Utley, Ducharme, Varthakavi, Shepherd, Santangelo, Lindquist (2020.12.28.424605v1.29) 2008; 105 Progida, Bakke (2020.12.28.424605v1.35) 2016 Mason, Aberg, Lawetz, DeLong, Whitehead, Liuzzi (2020.12.28.424605v1.44) 2003; 77 Collins (2020.12.28.424605v1.1) 2013 Kwilas, Liesman, Zhang, Walsh, Pickles, Peeples (2020.12.28.424605v1.18) 2009 Tayyari, Marchant, Moraes, Duan, Mastrangelo, Hegele (2020.12.28.424605v1.10) 2011; 17 Vanover, Smith, Blanchard, Alonas, Kirschman, Lifland (2020.12.28.424605v1.25) 2017; 8 Henderson, Murray, Yeo (2020.12.28.424605v1.21) 2002; 300 Shaikh, Cox, Lifland (2020.12.28.424605v1.28) 2012 Brock, Goldenring, Crowe (2020.12.28.424605v1.19) 2003; 100 Amorim, Da Silva, De Castro, Da Silva-Januário, Mendonça, Bonifacino (2020.12.28.424605v1.31) 2014 Lifland, Jung, Alonas, Zurla, Crowe, Santangelo (2020.12.28.424605v1.13) 2012; 86 Brock, Heck, McGraw, Crowe (2020.12.28.424605v1.15) 2005; 79 Rivera-Toledo, Gómez (2020.12.28.424605v1.40) 2012 Shaikh, Utley, Craven, Rogers, Lapierre, Goldenring (2020.12.28.424605v1.16) 2012; 7 Mills, Singer, Weiner, Holst (2020.12.28.424605v1.3) 1981 García, García-Barreno, Vivo, Melero (2020.12.28.424605v1.11) 1993; 195 Zhivaki, Lemoine, Lim, Morva, Vidalain, Schandene (2020.12.28.424605v1.30) 2017; 46 Covés-Datson, King, Legendre, Gupta, Chan, Gitlin (2020.12.28.424605v1.32) 2020 Proenca-Modena, Pereira Valera, Jacob, Buzatto, Saturno, Lopes (2020.12.28.424605v1.4) 2012; 7 Rezaee, Gibson, Piktel, Othumpangat, Piedimonte (2020.12.28.424605v1.2) 2011 Banting, Maile, Roquemore (2020.12.28.424605v1.33) 1998 Rojas, Kametaka, Haft, Bonifacino (2020.12.28.424605v1.37) 2007; 27 Brown, Rixon, Sugrue (2020.12.28.424605v1.39) 2002; 83 Feldman, Audet, Beeler (2020.12.28.424605v1.7) 2000; 74 Bailly, Richard, Sharma, Wang, Johansen, Cao (2020.12.28.424605v1.45) 2016 Santangelo, Bao (2020.12.28.424605v1.36) 2007; 35 Chia, Gunn, Gleeson (2020.12.28.424605v1.34) 2013 Anderson, Stott, Wertz (2020.12.28.424605v1.17) 1992 Lingemann, Liu., Buchholz., Surman., Martin., Collins., Munir. (2020.12.28.424605v1.43) 2019 Krzyzaniak, Zumstein, Gerez, Picotti, Helenius (2020.12.28.424605v1.9) 2013; 9 Haft, Sierra, Bafford, Lesniak, Barr, Taylor (2020.12.28.424605v1.38) 2000 Raiden, Sananez, Remes-Lenicov, Pandolfi, Romero, De Lillo (2020.12.28.424605v1.5) 2017 Shaikh, Crowe (2020.12.28.424605v1.27) 2013; 8 Kurt-Jones, Popova, Kwinn, Haynes, Jones, Tripp (2020.12.28.424605v1.41) 2000 Rincheval, Lelek, Gault, Bouillier, Sitterlin, Blouquit-Laye (2020.12.28.424605v1.14) 2017; 8 Galloux, Gabiane, Sourimant, Richard, England, Moudjou (2020.12.28.424605v1.22) 2015 Johnson, McNally, Ioannidis, Flano, Teng, Oomens (2020.12.28.424605v1.42) 2015 Matthews, Young, Tucker, Mackay (2020.12.28.424605v1.8) 2000; 74 San-Juan-Vergara, Sampayo-Escobar, Reyes, Cha, Pacheco-Lugo, Wong (2020.12.28.424605v1.26) 2012 Cardoso, Tavares, Jesus, Criado, de Carvalho, de P (2020.12.28.424605v1.24) 2020 Blondot, Dubosclard, Fix, Lassoued, Aumont-Nicaise, Bontems (2020.12.28.424605v1.46) 2012 Carromeu, Simabuco, Tamura, Farinha Arcieri, Ventura (2020.12.28.424605v1.12) 2007; 152 |
| References_xml | – volume: 100 start-page: 15143 year: 2003 end-page: 8 ident: 2020.12.28.424605v1.19 article-title: Apical recycling systems regulate directional budding of respiratory syncytial virus from polarized epithelial cells publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.2434327100 – year: 2016 ident: 2020.12.28.424605v1.35 article-title: Bidirectional traffic between the Golgi and the endosomes - machineries and regulation publication-title: Journal of Cell Science doi: 10.1242/jcs.185702 – year: 2016 ident: 2020.12.28.424605v1.45 article-title: Targeting human respiratory syncytial virus transcription anti-termination factor M2-1 to inhibit in vivo viral replication publication-title: Sci Rep doi: 10.1038/srep25806 – start-page: 1 year: 2014 end-page: 10 ident: 2020.12.28.424605v1.23 article-title: Surface expression of the hRSV nucleoprotein impairs immunological synapse formation with T cells publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.1400760111 – volume: 7 start-page: e40826 year: 2012 ident: 2020.12.28.424605v1.16 article-title: Respiratory syncytial virus assembles into structured filamentous virion particles independently of host cytoskeleton and related proteins publication-title: PLoS One doi: 10.1371/journal.pone.0040826 – volume: 9 start-page: e1003309 year: 2013 ident: 2020.12.28.424605v1.9 article-title: Host cell entry of respiratory syncytial virus involves macropinocytosis followed by proteolytic activation of the F protein publication-title: PLoS Pathog doi: 10.1371/journal.ppat.1003309 – year: 1981 ident: 2020.12.28.424605v1.3 article-title: Immunohistological demonstration of respiratory syncytial virus antigens in Paget disease of bone publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.78.2.1209 – volume: 8 start-page: 123 year: 2013 end-page: 31 ident: 2020.12.28.424605v1.27 article-title: Molecular mechanisms driving respiratory syncytial virus assembly publication-title: Future Microbiol doi: 10.2217/fmb.12.132 – year: 2011 ident: 2020.12.28.424605v1.2 article-title: Respiratory syncytial virus infection in human bone marrow stromal cells publication-title: Am J Respir Cell Mol Biol doi: 10.1165/rcmb.2010-0121OC – year: 1998 ident: 2020.12.28.424605v1.33 article-title: The steady state distribution of humTGN46 is not significantly altered in cells defective in clathrin-mediated endocytosis publication-title: J Cell Sci – year: 2000 ident: 2020.12.28.424605v1.38 article-title: Human Orthologs of Yeast Vacuolar Protein Sorting Proteins Vps26, 29, and 35: Assembly into Multimeric Complexes publication-title: Mol Biol Cell doi: 10.1091/mbc.11.12.4105 – volume: 8 year: 2017 ident: 2020.12.28.424605v1.25 article-title: RSV glycoprotein and genomic RNA dynamics reveal filament assembly prior to the plasma membrane publication-title: Nat Commun doi: 10.1038/s41467-017-00732-z – year: 2012 ident: 2020.12.28.424605v1.46 article-title: Structure and functional analysis of the RNA- and viral phosphoprotein-binding domain of respiratory syncytial virus M2-1 protein publication-title: PLoS Pathog doi: 10.1371/journal.ppat.1002734 – volume: 8 year: 2017 ident: 2020.12.28.424605v1.14 article-title: Functional organization of cytoplasmic inclusion bodies in cells infected by respiratory syncytial virus publication-title: Nat Commun doi: 10.1038/s41467-017-00655-9 – year: 2012 ident: 2020.12.28.424605v1.26 article-title: Cholesterol-Rich Microdomains as Docking Platforms for Respiratory Syncytial Virus in Normal Human Bronchial Epithelial Cells publication-title: J Virol doi: 10.1128/jvi.06274-11 – volume: 77 start-page: 10670 year: 2003 end-page: 6 ident: 2020.12.28.424605v1.44 article-title: Interaction between human respiratory syncytial virus (RSV) M2-1 and P proteins is required for reconstitution of M2-1-dependent RSV minigenome activity publication-title: J Virol doi: 10.1128/JVI.77.19.10670-10676.2003 – year: 1992 ident: 2020.12.28.424605v1.17 article-title: Intracellular processing of the human respiratory syncytial virus fusion glycoprotein: Amino acid substitutions affecting folding, transport and cleavage publication-title: J Gen Virol doi: 10.1099/0022-1317-73-5-1177 – volume: 105 start-page: 10209 year: 2008 end-page: 10214 ident: 2020.12.28.424605v1.29 publication-title: Respiratory syncytial virus uses a Vps4-independent budding mechanism controlled by Rab11-FIP2 – volume: 74 start-page: 5911 year: 2000 end-page: 5920 ident: 2020.12.28.424605v1.8 article-title: The core of the respiratory syncytial virus fusion protein is a trimeric coiled coil publication-title: J Virol doi: 10.1128/JVI.74.13.5911-5920.2000 – volume: 17 start-page: 1132 year: 2011 end-page: 1135 ident: 2020.12.28.424605v1.10 article-title: Identification of nucleolin as a cellular receptor for human respiratory syncytial virus publication-title: Nat Med doi: 10.1038/nm.2444 – start-page: 307 year: 2013 end-page: 315 ident: 2020.12.28.424605v1.34 article-title: Cargo trafficking between endosomes and the trans-Golgi network publication-title: Histochemistry and Cell Biology doi: 10.1007/s00418-013-1125-6 – volume: 35 start-page: 3602 year: 2007 end-page: 11 ident: 2020.12.28.424605v1.36 article-title: Dynamics of filamentous viral RNPs prior to egress publication-title: Nucleic Acids Res doi: 10.1093/nar/gkm246 – volume: 195 start-page: 243 year: 1993 end-page: 7 ident: 2020.12.28.424605v1.11 article-title: Cytoplasmic inclusions of respiratory syncytial virus-infected cells: formation of inclusion bodies in transfected cells that coexpress the nucleoprotein, the phosphoprotein, and the 22K protein publication-title: Virology doi: 10.1006/viro.1993.1366 – year: 2014 ident: 2020.12.28.424605v1.31 article-title: Interaction of HIV-1 nef protein with the host protein Alix promotes lysosomal targeting of cd4 receptor publication-title: J Biol Chem doi: 10.1074/jbc.M114.560193 – volume: 89: JVI start-page: 03500 year: 2015 end-page: 14 ident: 2020.12.28.424605v1.20 article-title: Dimerization of Matrix protein is required for budding of Respiratory Syncytial Virus publication-title: J Virol doi: 10.1128/JVI.03500-14 – year: 2015 ident: 2020.12.28.424605v1.22 article-title: Identification and Characterization of the Binding Site of the Respiratory Syncytial Virus Phosphoprotein to RNA-Free Nucleoprotein publication-title: J Virol doi: 10.1128/jvi.03666-14 – year: 2019 ident: 2020.12.28.424605v1.43 article-title: The alpha-1 subunit of the Na+,K+-ATPase (ATP1A1) is required for macropinocytic entry of respiratory syncytial virus (RSV) in human respiratory epithelial cells publication-title: PLoS Pathog doi: 10.1371/journal.ppat.1007963 – year: 2012 ident: 2020.12.28.424605v1.40 article-title: Respiratory syncytial virus persistence in macrophages alters the profile of cellular gene expression publication-title: Viruses doi: 10.3390/v4123270 – volume: 7 year: 2012 ident: 2020.12.28.424605v1.4 article-title: High rates of detection of respiratory viruses in tonsillar tissues from children with chronic adenotonsillar disease publication-title: PLoS One doi: 10.1371/journal.pone.0042136 – volume: 74 start-page: 6442 year: 2000 end-page: 7 ident: 2020.12.28.424605v1.7 article-title: The fusion glycoprotein of human respiratory syncytial virus facilitates virus attachment and infectivity via an interaction with cellular heparan sulfate publication-title: J Virol doi: 10.1128/JVI.74.14.6442-6447.2000.Updated – year: 2012 ident: 2020.12.28.424605v1.28 publication-title: A Critical Phenylalanine Residue in the Respiratory Syncytial Virus Fusion Protein Cytoplasmic Tail Mediates Assembly of Internal Viral doi: 10.1128/mBio.00270-11.Editor – volume: 27 start-page: 1112 year: 2007 end-page: 24 ident: 2020.12.28.424605v1.37 article-title: Interchangeable but essential functions of SNX1 and SNX2 in the association of retromer with endosomes and the trafficking of mannose 6-phosphate receptors publication-title: Mol Cell Biol doi: 10.1128/MCB.00156-06 – start-page: 1086 year: 2013 end-page: 1123 ident: 2020.12.28.424605v1.1 article-title: Respiratory Syncytial Virus and Metapneumovirus publication-title: Fields Virology – volume: 79 start-page: 12528 year: 2005 end-page: 35 ident: 2020.12.28.424605v1.15 article-title: The transmembrane domain of the respiratory syncytial virus F protein is an orientation-independent apical plasma membrane sorting sequence publication-title: J Virol doi: 10.1128/JVI.79.19.12528-12535.2005 – year: 2009 ident: 2020.12.28.424605v1.18 article-title: Respiratory Syncytial Virus Grown in Vero Cells Contains a Truncated Attachment Protein That Alters Its Infectivity and Dependence on Glycosaminoglycans publication-title: J Virol doi: 10.1128/jvi.00986-09 – volume: 46 start-page: 301 year: 2017 end-page: 314 ident: 2020.12.28.424605v1.30 article-title: Respiratory Syncytial Virus Infects Regulatory B Cells in Human Neonates via Chemokine Receptor CX3CR1 and Promotes Lung Disease Severity publication-title: Immunity doi: 10.1016/j.immuni.2017.01.010 – year: 2000 ident: 2020.12.28.424605v1.41 article-title: Pattern recognition receptors TLR4 and CD14 mediate response to respiratory syncytial virus publication-title: Nat Immunol doi: 10.1038/80833 – year: 2020 ident: 2020.12.28.424605v1.24 article-title: Host retromer protein sorting nexin 2 interacts with human respiratory syncytial virus structural proteins and is required for efficient viral production publication-title: MBio doi: 10.1128/mBio.01869-20 – year: 2020 ident: 2020.12.28.424605v1.32 article-title: A molecularly engineered antiviral banana lectin inhibits fusion and is efficacious against influenza virus infection in vivo publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.1915152117 – volume: 300 start-page: 244 year: 2002 end-page: 254 ident: 2020.12.28.424605v1.21 article-title: Sorting of the Respiratory Syncytial Virus Matrix Protein into Detergent-Resistant Structures Is Dependent on Cell-Surface Expression of the Glycoproteins publication-title: Virology doi: 10.1006/viro.2002.1540 – volume: 152 start-page: 2259 year: 2007 end-page: 63 ident: 2020.12.28.424605v1.12 article-title: Intracellular localization of human respiratory syncytial virus L protein publication-title: Arch Virol doi: 10.1007/s00705-007-1048-4 – volume: 86 start-page: 8245 year: 2012 end-page: 58 ident: 2020.12.28.424605v1.13 article-title: Human respiratory syncytial virus nucleoprotein and inclusion bodies antagonize the innate immune response mediated by MDA5 and MAVS publication-title: J Virol doi: 10.1128/JVI.00215-12 – year: 2017 ident: 2020.12.28.424605v1.5 article-title: Respiratory syncytial virus (RSV) infects CD4+ T cells: Frequency of circulating CD4+ RSV+ T cells as a marker of disease severity in young children publication-title: Journal of Infectious Diseases doi: 10.1093/infdis/jix070 – year: 1987 ident: 2020.12.28.424605v1.6 article-title: Demonstration that glycoprotein G is the attachment protein of respiratory syncytial virus publication-title: J Gen Virol doi: 10.1099/0022-1317-68-9-2521 – year: 2015 ident: 2020.12.28.424605v1.42 article-title: Respiratory Syncytial Virus Uses CX3CR1 as a Receptor on Primary Human Airway Epithelial Cultures publication-title: PLoS Pathog doi: 10.1371/journal.ppat.1005318 – volume: 83 start-page: 1841 year: 2002 end-page: 50 ident: 2020.12.28.424605v1.39 article-title: Respiratory syncytial virus assembly occurs in GM1-rich regions of the host-cell membrane and alters the cellular distribution of tyrosine phosphorylated caveolin-1 publication-title: J Gen Virol |
| SSID | ssj0002961374 |
| Score | 1.6108803 |
| SecondaryResourceType | preprint |
| Snippet | Abstract Human respiratory syncytial virus is the most frequent cause of severe respiratory disease in children. The main targets of HRSV infection are... Human respiratory syncytial virus is the most frequent cause of severe respiratory disease in children. The main targets of HRSV infection are epithelial cells... |
| SourceID | biorxiv proquest |
| SourceType | Open Access Repository Aggregation Database |
| SubjectTerms | CD4 antigen Cell lineage Epithelial cells Filaments Flow cytometry Fluorescence in situ hybridization Inclusion bodies Infections Lymphocytes T Lymphoid cells Microbiology Proteins Replication Respiratory diseases Respiratory syncytial virus Respiratory tract Virions Viruses |
| Title | The replication of the human respiratory syncytial virus in a T cell line has multiple ineffective steps |
| URI | https://www.proquest.com/docview/2505917204 https://www.biorxiv.org/content/10.1101/2020.12.28.424605 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dS8MwEA-6KfjkN07niOBrZ5c2afokKBsKOopMmU8lSVNWkLa223D_vZe2mw-CLz6Wa0q53OfvjjuErgmX1VQRizmxsFwRaUtIRa3Io5FkBnSrMN23J2885tOpHzSAW9m0Va5tYmWoo0wZjPzGuGpILYjt3uafltkaZaqrzQqNbdQ2UxKcqnUv2GAsxAdnVQ1iJswHxSc2bQqbIIgm7TfDFfqE911iyoMQAsskK76S5S_DXHmb0f5___MAtQOR6-IQben0CO3W-yZXx2gGQoELvSlZ4yzGEADialEfEDZVd1yuwOiC8n_gZVIsSpykWOAJNjA_NoEpnokSr5sRgVq3hYDlxCA1eXmCXkfDyf2D1axasCTkY9TiwpPM9aikMiJMSofpQSz4gEZKMCaYmQzGPFcqBu87yrUlVbYyRVzla0Ei5xS10izVZwgroiHootphcED5jFNIfB1BtC1iIqjTQVcNl8O8HqgRmpsIByQkPKxvooO6a-aGjU6V4Q9nz_8mX6A980XTdEJ4F7XmxUJfoh21nCdl0UPtu-E4eOlVogJPweNz8P4N2JrFtw |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LT9tAEB7RQAWnFigqr7JI9GjqjL3r9aHqgYeICFEOAdGT2V1vhKUqCTYE8qf4jZ31IxyQuHHgvPZK3m8837x2BuAApS67ingiGCovVKn1lDbcSyOeauGCbmVM96ob9Xry-jruL8BzcxfGlVU2OrFU1OnYuBj5L0fV5FqgH_6Z3HluapTLrjYjNCqxOLezR3LZit-dY8L3J-LpyeDozKunCniaXA_uSRVpEUZcc52i0DoQtj1Uss1To4RQwjXBElGojaDnAxP6mhvfuHylia3CNKB9P8FiSMIuW7DY71z0_86jOhgTPZatn1HEpGrQ53UqlUTfBRpcO4dDlIchuoQkGd06G-dP2fQVFZT8dvrlo53MVzoRNbH5KizY0Rp8riZqztbhlsSe5XaelGfjISMTl5WjCGlhXlfAihnRCqm3f2ya5Q8Fy0ZMsQFziQzmTG92qwrWlFvSalX4QtzA6L-YFN_g8l0-bgNao_HIfgdm0JJZyW0g6AUTC8nJtQ8UWl8NUfFgE_ZrVJNJ1TIkccgnbUxQJhXym7DTgJnUWqNIXpDcent5D5bPBhfdpNvpnW_Ditvdldig3IHWff5gd2HJTO-zIv9RCyiDm_dG_j8pDR_5 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+replication+of+the+human+respiratory+syncytial+virus+in+a+T+cell+line+has+multiple+ineffective+steps&rft.jtitle=bioRxiv&rft.au=De+Souza+Cardoso%2C+Ricardo&rft.au=Ana+Carolina+Lunardello+Coelho&rft.au=Bruna+La%C3%ADs+Santos+De+Jesus&rft.au=Vitti%2C+Brenda+Cristina&rft.date=2020-12-28&rft.pub=Cold+Spring+Harbor+Laboratory+Press&rft.issn=2692-8205&rft.eissn=2692-8205&rft_id=info:doi/10.1101%2F2020.12.28.424605 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2692-8205&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2692-8205&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2692-8205&client=summon |