The replication of the human respiratory syncytial virus in a T cell line has multiple ineffective steps

Abstract Human respiratory syncytial virus is the most frequent cause of severe respiratory disease in children. The main targets of HRSV infection are epithelial cells of the respiratory tract and the great majority of the studies regarding HRSV infection are done in respiratory cells. Recently, th...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:bioRxiv
Hlavní autori: De Souza Cardoso, Ricardo, Ana Carolina Lunardello Coelho, Bruna Laís Santos De Jesus, Vitti, Brenda Cristina, Juliano De Paula Souza, Mendes Viana, Rosa Maria, Pontelli, Marjorie C, Murakami, Tomoyuki, Armando Moraes Ventura, Ono, Akira, Arruda, Eurico
Médium: Paper
Jazyk:English
Vydavateľské údaje: Cold Spring Harbor Cold Spring Harbor Laboratory Press 28.12.2020
Cold Spring Harbor Laboratory
Vydanie:1.1
Predmet:
ISSN:2692-8205, 2692-8205
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Abstract Human respiratory syncytial virus is the most frequent cause of severe respiratory disease in children. The main targets of HRSV infection are epithelial cells of the respiratory tract and the great majority of the studies regarding HRSV infection are done in respiratory cells. Recently, the interest on respiratory virus infection of lymphoid cells has been growing, but details of the interaction of HRSV with lymphoid cells remain unknown. Therefore, this study was done to assess the relationship of HRSV with A3.01 cells, a CD4+ T cell line. We found by flow cytometry and fluorescent focus assay that A3.01 cells are susceptible but virtually not permissive to HRSV infection. De-quenching experiments revealed that the fusion process of HRSV in A3.01 cells is reduced in comparison to HEp-2 cells, an epithelial cell lineage. Quantification of viral RNA by qPCR determined that the replication of HRSV in A3.01 cells was modest. Western blot and quantitative flow cytometry analyses demonstrated that the production of HRSV proteins in A3.01 was significantly lower than in HEp-2 cells. Additionally, we found by fluorescence in situ hybridization that the inclusion body-associated granules (IBAG’s) are almost absent in HRSV inclusion bodies in A3.01 cells. We also assessed the intracellular trafficking of HRSV proteins and found that HRSV proteins co-localized partially with the secretory pathway in A3.01 cells, but these HRSV proteins and viral filaments are present only scarcely at the plasma membrane. HRSV infection of A3.01 CD4+ T cells is virtually unproductive as compared to HEp-2 cells, with virion production hampered by low fusion, hypofunctional inclusion bodies, altered trafficking of viral proteins to the plasma membrane.
AbstractList Human respiratory syncytial virus is the most frequent cause of severe respiratory disease in children. The main targets of HRSV infection are epithelial cells of the respiratory tract and the great majority of the studies regarding HRSV infection are done in respiratory cells. Recently, the interest on respiratory virus infection of lymphoid cells has been growing, but details of the interaction of HRSV with lymphoid cells remain unknown. Therefore, this study was done to assess the relationship of HRSV with A3.01 cells, a CD4+ T cell line. We found by flow cytometry and fluorescent focus assay that A3.01 cells are susceptible but virtually not permissive to HRSV infection. De-quenching experiments revealed that the fusion process of HRSV in A3.01 cells is reduced in comparison to HEp-2 cells, an epithelial cell lineage. Quantification of viral RNA by qPCR determined that the replication of HRSV in A3.01 cells was modest. Western blot and quantitative flow cytometry analyses demonstrated that the production of HRSV proteins in A3.01 was significantly lower than in HEp-2 cells. Additionally, we found by fluorescence in situ hybridization that the inclusion body-associated granules (IBAG’s) are almost absent in HRSV inclusion bodies in A3.01 cells. We also assessed the intracellular trafficking of HRSV proteins and found that HRSV proteins co-localized partially with the secretory pathway in A3.01 cells, but these HRSV proteins and viral filaments are present only scarcely at the plasma membrane. HRSV infection of A3.01 CD4+ T cells is virtually unproductive as compared to HEp-2 cells, with virion production hampered by low fusion, hypofunctional inclusion bodies, altered trafficking of viral proteins to the plasma membrane.
Abstract Human respiratory syncytial virus is the most frequent cause of severe respiratory disease in children. The main targets of HRSV infection are epithelial cells of the respiratory tract and the great majority of the studies regarding HRSV infection are done in respiratory cells. Recently, the interest on respiratory virus infection of lymphoid cells has been growing, but details of the interaction of HRSV with lymphoid cells remain unknown. Therefore, this study was done to assess the relationship of HRSV with A3.01 cells, a CD4+ T cell line. We found by flow cytometry and fluorescent focus assay that A3.01 cells are susceptible but virtually not permissive to HRSV infection. De-quenching experiments revealed that the fusion process of HRSV in A3.01 cells is reduced in comparison to HEp-2 cells, an epithelial cell lineage. Quantification of viral RNA by qPCR determined that the replication of HRSV in A3.01 cells was modest. Western blot and quantitative flow cytometry analyses demonstrated that the production of HRSV proteins in A3.01 was significantly lower than in HEp-2 cells. Additionally, we found by fluorescence in situ hybridization that the inclusion body-associated granules (IBAG’s) are almost absent in HRSV inclusion bodies in A3.01 cells. We also assessed the intracellular trafficking of HRSV proteins and found that HRSV proteins co-localized partially with the secretory pathway in A3.01 cells, but these HRSV proteins and viral filaments are present only scarcely at the plasma membrane. HRSV infection of A3.01 CD4+ T cells is virtually unproductive as compared to HEp-2 cells, with virion production hampered by low fusion, hypofunctional inclusion bodies, altered trafficking of viral proteins to the plasma membrane.
Author Arruda, Eurico
Mendes Viana, Rosa Maria
Armando Moraes Ventura
Vitti, Brenda Cristina
Juliano De Paula Souza
Murakami, Tomoyuki
De Souza Cardoso, Ricardo
Ana Carolina Lunardello Coelho
Bruna Laís Santos De Jesus
Pontelli, Marjorie C
Ono, Akira
Author_xml – sequence: 1
  givenname: Ricardo
  surname: De Souza Cardoso
  fullname: De Souza Cardoso, Ricardo
– sequence: 2
  fullname: Ana Carolina Lunardello Coelho
– sequence: 3
  fullname: Bruna Laís Santos De Jesus
– sequence: 4
  givenname: Brenda
  surname: Vitti
  middlename: Cristina
  fullname: Vitti, Brenda Cristina
– sequence: 5
  fullname: Juliano De Paula Souza
– sequence: 6
  givenname: Rosa
  surname: Mendes Viana
  middlename: Maria
  fullname: Mendes Viana, Rosa Maria
– sequence: 7
  givenname: Marjorie
  surname: Pontelli
  middlename: C
  fullname: Pontelli, Marjorie C
– sequence: 8
  givenname: Tomoyuki
  surname: Murakami
  fullname: Murakami, Tomoyuki
– sequence: 9
  fullname: Armando Moraes Ventura
– sequence: 10
  givenname: Akira
  surname: Ono
  fullname: Ono, Akira
– sequence: 11
  givenname: Eurico
  surname: Arruda
  fullname: Arruda, Eurico
BookMark eNpNkL1OwzAUhS1UJErpA7BZYmFJsW9sJxlRBQWpEkuZI9t1VFeuE2ynIm-PURmY7tE93_3RuUUz33uD0D0lK0oJfQICWcEK6hUDJgi_QnMQDRQ1ED77p2_QMsYjIQQaQcuKzdFhdzA4mMFZLZPtPe47nHLrMJ6kz0YcbJCpDxOOk9dTstLhsw1jxNZjiXdYG-ewsz6PyIhPo0t2cCa7puuMTvZscExmiHfoupMumuVfXaDP15fd-q3Yfmze18_bQlHCeFHLSglWccXVHoRSpTC0kzXley2FkIKwkoiKKS0yX2pGFNdEV1CBboyEfblAj5e9yvbh257bIdiTDFP7G1JLoYW6vYSU0YcLOoT-azQxtcd-DD5_1wInvKEV5HM_do5o-Q
Cites_doi 10.1073/pnas.2434327100
10.1242/jcs.185702
10.1038/srep25806
10.1073/pnas.1400760111
10.1371/journal.pone.0040826
10.1371/journal.ppat.1003309
10.1073/pnas.78.2.1209
10.2217/fmb.12.132
10.1165/rcmb.2010-0121OC
10.1091/mbc.11.12.4105
10.1038/s41467-017-00732-z
10.1371/journal.ppat.1002734
10.1038/s41467-017-00655-9
10.1128/jvi.06274-11
10.1128/JVI.77.19.10670-10676.2003
10.1099/0022-1317-73-5-1177
10.1128/JVI.74.13.5911-5920.2000
10.1038/nm.2444
10.1007/s00418-013-1125-6
10.1093/nar/gkm246
10.1006/viro.1993.1366
10.1074/jbc.M114.560193
10.1128/JVI.03500-14
10.1128/jvi.03666-14
10.1371/journal.ppat.1007963
10.3390/v4123270
10.1371/journal.pone.0042136
10.1128/JVI.74.14.6442-6447.2000.Updated
10.1128/mBio.00270-11.Editor
10.1128/MCB.00156-06
10.1128/JVI.79.19.12528-12535.2005
10.1128/jvi.00986-09
10.1016/j.immuni.2017.01.010
10.1038/80833
10.1128/mBio.01869-20
10.1073/pnas.1915152117
10.1006/viro.2002.1540
10.1007/s00705-007-1048-4
10.1128/JVI.00215-12
10.1093/infdis/jix070
10.1099/0022-1317-68-9-2521
10.1371/journal.ppat.1005318
ContentType Paper
Copyright 2020. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (“the License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2020, Posted by Cold Spring Harbor Laboratory
Copyright_xml – notice: 2020. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (“the License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2020, Posted by Cold Spring Harbor Laboratory
DBID 8FE
8FH
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
GNUQQ
HCIFZ
LK8
M7P
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
FX.
DOI 10.1101/2020.12.28.424605
DatabaseName ProQuest SciTech Collection
ProQuest Natural Science Collection
ProQuest Central (Alumni Edition)
ProQuest Central UK/Ireland
ProQuest Central Essentials - QC
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central Korea
ProQuest Central Student
SciTech Premium Collection
ProQuest Biological Science Collection
Biological Science Database
Proquest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
bioRxiv
DatabaseTitle Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Biological Science Collection
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
Biological Science Database
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
Natural Science Collection
ProQuest Central Korea
Biological Science Collection
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList
Publicly Available Content Database
Database_xml – sequence: 1
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2692-8205
Edition 1.1
ExternalDocumentID 2020.12.28.424605v1
Genre Working Paper/Pre-Print
GroupedDBID 8FE
8FH
ABUWG
AFKRA
ALMA_UNASSIGNED_HOLDINGS
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
GNUQQ
HCIFZ
LK8
M7P
NQS
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PROAC
RHI
FX.
ID FETCH-LOGICAL-b1045-8a7b6475b5bd26bb36e1fa815dca66a60430674bc6b103c40b5c0c7272c9ea2d3
IEDL.DBID M7P
ISSN 2692-8205
IngestDate Tue Jan 07 18:56:47 EST 2025
Fri Jul 25 09:17:30 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
Language English
License This pre-print is available under a Creative Commons License (Attribution-NonCommercial-NoDerivs 4.0 International), CC BY-NC-ND 4.0, as described at http://creativecommons.org/licenses/by-nc-nd/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-b1045-8a7b6475b5bd26bb36e1fa815dca66a60430674bc6b103c40b5c0c7272c9ea2d3
Notes SourceType-Working Papers-1
ObjectType-Working Paper/Pre-Print-1
content type line 50
ORCID 0000-0001-7841-851X
0000-0003-2858-2076
0000-0002-0978-410X
0000-0002-2306-1098
0000-0001-5722-4142
0000-0003-3173-5977
OpenAccessLink https://www.proquest.com/docview/2505917204?pq-origsite=%requestingapplication%
PQID 2505917204
PQPubID 2050091
PageCount 41
ParticipantIDs biorxiv_primary_2020_12_28_424605
proquest_journals_2505917204
PublicationCentury 2000
PublicationDate 20201228
PublicationDateYYYYMMDD 2020-12-28
PublicationDate_xml – month: 12
  year: 2020
  text: 20201228
  day: 28
PublicationDecade 2020
PublicationPlace Cold Spring Harbor
PublicationPlace_xml – name: Cold Spring Harbor
PublicationTitle bioRxiv
PublicationYear 2020
Publisher Cold Spring Harbor Laboratory Press
Cold Spring Harbor Laboratory
Publisher_xml – name: Cold Spring Harbor Laboratory Press
– name: Cold Spring Harbor Laboratory
References Förster, Maertens, Farrell, Bajorek (2020.12.28.424605v1.20) 2015; 89: JVI
Levine, Kaliaber-Franco, Paradiso (2020.12.28.424605v1.6) 1987
Céspedes, Bueno, Ramírez, Gomez, Riquelme, Palavecino (2020.12.28.424605v1.23) 2014
Utley, Ducharme, Varthakavi, Shepherd, Santangelo, Lindquist (2020.12.28.424605v1.29) 2008; 105
Progida, Bakke (2020.12.28.424605v1.35) 2016
Mason, Aberg, Lawetz, DeLong, Whitehead, Liuzzi (2020.12.28.424605v1.44) 2003; 77
Collins (2020.12.28.424605v1.1) 2013
Kwilas, Liesman, Zhang, Walsh, Pickles, Peeples (2020.12.28.424605v1.18) 2009
Tayyari, Marchant, Moraes, Duan, Mastrangelo, Hegele (2020.12.28.424605v1.10) 2011; 17
Vanover, Smith, Blanchard, Alonas, Kirschman, Lifland (2020.12.28.424605v1.25) 2017; 8
Henderson, Murray, Yeo (2020.12.28.424605v1.21) 2002; 300
Shaikh, Cox, Lifland (2020.12.28.424605v1.28) 2012
Brock, Goldenring, Crowe (2020.12.28.424605v1.19) 2003; 100
Amorim, Da Silva, De Castro, Da Silva-Januário, Mendonça, Bonifacino (2020.12.28.424605v1.31) 2014
Lifland, Jung, Alonas, Zurla, Crowe, Santangelo (2020.12.28.424605v1.13) 2012; 86
Brock, Heck, McGraw, Crowe (2020.12.28.424605v1.15) 2005; 79
Rivera-Toledo, Gómez (2020.12.28.424605v1.40) 2012
Shaikh, Utley, Craven, Rogers, Lapierre, Goldenring (2020.12.28.424605v1.16) 2012; 7
Mills, Singer, Weiner, Holst (2020.12.28.424605v1.3) 1981
García, García-Barreno, Vivo, Melero (2020.12.28.424605v1.11) 1993; 195
Zhivaki, Lemoine, Lim, Morva, Vidalain, Schandene (2020.12.28.424605v1.30) 2017; 46
Covés-Datson, King, Legendre, Gupta, Chan, Gitlin (2020.12.28.424605v1.32) 2020
Proenca-Modena, Pereira Valera, Jacob, Buzatto, Saturno, Lopes (2020.12.28.424605v1.4) 2012; 7
Rezaee, Gibson, Piktel, Othumpangat, Piedimonte (2020.12.28.424605v1.2) 2011
Banting, Maile, Roquemore (2020.12.28.424605v1.33) 1998
Rojas, Kametaka, Haft, Bonifacino (2020.12.28.424605v1.37) 2007; 27
Brown, Rixon, Sugrue (2020.12.28.424605v1.39) 2002; 83
Feldman, Audet, Beeler (2020.12.28.424605v1.7) 2000; 74
Bailly, Richard, Sharma, Wang, Johansen, Cao (2020.12.28.424605v1.45) 2016
Santangelo, Bao (2020.12.28.424605v1.36) 2007; 35
Chia, Gunn, Gleeson (2020.12.28.424605v1.34) 2013
Anderson, Stott, Wertz (2020.12.28.424605v1.17) 1992
Lingemann, Liu., Buchholz., Surman., Martin., Collins., Munir. (2020.12.28.424605v1.43) 2019
Krzyzaniak, Zumstein, Gerez, Picotti, Helenius (2020.12.28.424605v1.9) 2013; 9
Haft, Sierra, Bafford, Lesniak, Barr, Taylor (2020.12.28.424605v1.38) 2000
Raiden, Sananez, Remes-Lenicov, Pandolfi, Romero, De Lillo (2020.12.28.424605v1.5) 2017
Shaikh, Crowe (2020.12.28.424605v1.27) 2013; 8
Kurt-Jones, Popova, Kwinn, Haynes, Jones, Tripp (2020.12.28.424605v1.41) 2000
Rincheval, Lelek, Gault, Bouillier, Sitterlin, Blouquit-Laye (2020.12.28.424605v1.14) 2017; 8
Galloux, Gabiane, Sourimant, Richard, England, Moudjou (2020.12.28.424605v1.22) 2015
Johnson, McNally, Ioannidis, Flano, Teng, Oomens (2020.12.28.424605v1.42) 2015
Matthews, Young, Tucker, Mackay (2020.12.28.424605v1.8) 2000; 74
San-Juan-Vergara, Sampayo-Escobar, Reyes, Cha, Pacheco-Lugo, Wong (2020.12.28.424605v1.26) 2012
Cardoso, Tavares, Jesus, Criado, de Carvalho, de P (2020.12.28.424605v1.24) 2020
Blondot, Dubosclard, Fix, Lassoued, Aumont-Nicaise, Bontems (2020.12.28.424605v1.46) 2012
Carromeu, Simabuco, Tamura, Farinha Arcieri, Ventura (2020.12.28.424605v1.12) 2007; 152
References_xml – volume: 100
  start-page: 15143
  year: 2003
  end-page: 8
  ident: 2020.12.28.424605v1.19
  article-title: Apical recycling systems regulate directional budding of respiratory syncytial virus from polarized epithelial cells
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.2434327100
– year: 2016
  ident: 2020.12.28.424605v1.35
  article-title: Bidirectional traffic between the Golgi and the endosomes - machineries and regulation
  publication-title: Journal of Cell Science
  doi: 10.1242/jcs.185702
– year: 2016
  ident: 2020.12.28.424605v1.45
  article-title: Targeting human respiratory syncytial virus transcription anti-termination factor M2-1 to inhibit in vivo viral replication
  publication-title: Sci Rep
  doi: 10.1038/srep25806
– start-page: 1
  year: 2014
  end-page: 10
  ident: 2020.12.28.424605v1.23
  article-title: Surface expression of the hRSV nucleoprotein impairs immunological synapse formation with T cells
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.1400760111
– volume: 7
  start-page: e40826
  year: 2012
  ident: 2020.12.28.424605v1.16
  article-title: Respiratory syncytial virus assembles into structured filamentous virion particles independently of host cytoskeleton and related proteins
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0040826
– volume: 9
  start-page: e1003309
  year: 2013
  ident: 2020.12.28.424605v1.9
  article-title: Host cell entry of respiratory syncytial virus involves macropinocytosis followed by proteolytic activation of the F protein
  publication-title: PLoS Pathog
  doi: 10.1371/journal.ppat.1003309
– year: 1981
  ident: 2020.12.28.424605v1.3
  article-title: Immunohistological demonstration of respiratory syncytial virus antigens in Paget disease of bone
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.78.2.1209
– volume: 8
  start-page: 123
  year: 2013
  end-page: 31
  ident: 2020.12.28.424605v1.27
  article-title: Molecular mechanisms driving respiratory syncytial virus assembly
  publication-title: Future Microbiol
  doi: 10.2217/fmb.12.132
– year: 2011
  ident: 2020.12.28.424605v1.2
  article-title: Respiratory syncytial virus infection in human bone marrow stromal cells
  publication-title: Am J Respir Cell Mol Biol
  doi: 10.1165/rcmb.2010-0121OC
– year: 1998
  ident: 2020.12.28.424605v1.33
  article-title: The steady state distribution of humTGN46 is not significantly altered in cells defective in clathrin-mediated endocytosis
  publication-title: J Cell Sci
– year: 2000
  ident: 2020.12.28.424605v1.38
  article-title: Human Orthologs of Yeast Vacuolar Protein Sorting Proteins Vps26, 29, and 35: Assembly into Multimeric Complexes
  publication-title: Mol Biol Cell
  doi: 10.1091/mbc.11.12.4105
– volume: 8
  year: 2017
  ident: 2020.12.28.424605v1.25
  article-title: RSV glycoprotein and genomic RNA dynamics reveal filament assembly prior to the plasma membrane
  publication-title: Nat Commun
  doi: 10.1038/s41467-017-00732-z
– year: 2012
  ident: 2020.12.28.424605v1.46
  article-title: Structure and functional analysis of the RNA- and viral phosphoprotein-binding domain of respiratory syncytial virus M2-1 protein
  publication-title: PLoS Pathog
  doi: 10.1371/journal.ppat.1002734
– volume: 8
  year: 2017
  ident: 2020.12.28.424605v1.14
  article-title: Functional organization of cytoplasmic inclusion bodies in cells infected by respiratory syncytial virus
  publication-title: Nat Commun
  doi: 10.1038/s41467-017-00655-9
– year: 2012
  ident: 2020.12.28.424605v1.26
  article-title: Cholesterol-Rich Microdomains as Docking Platforms for Respiratory Syncytial Virus in Normal Human Bronchial Epithelial Cells
  publication-title: J Virol
  doi: 10.1128/jvi.06274-11
– volume: 77
  start-page: 10670
  year: 2003
  end-page: 6
  ident: 2020.12.28.424605v1.44
  article-title: Interaction between human respiratory syncytial virus (RSV) M2-1 and P proteins is required for reconstitution of M2-1-dependent RSV minigenome activity
  publication-title: J Virol
  doi: 10.1128/JVI.77.19.10670-10676.2003
– year: 1992
  ident: 2020.12.28.424605v1.17
  article-title: Intracellular processing of the human respiratory syncytial virus fusion glycoprotein: Amino acid substitutions affecting folding, transport and cleavage
  publication-title: J Gen Virol
  doi: 10.1099/0022-1317-73-5-1177
– volume: 105
  start-page: 10209
  year: 2008
  end-page: 10214
  ident: 2020.12.28.424605v1.29
  publication-title: Respiratory syncytial virus uses a Vps4-independent budding mechanism controlled by Rab11-FIP2
– volume: 74
  start-page: 5911
  year: 2000
  end-page: 5920
  ident: 2020.12.28.424605v1.8
  article-title: The core of the respiratory syncytial virus fusion protein is a trimeric coiled coil
  publication-title: J Virol
  doi: 10.1128/JVI.74.13.5911-5920.2000
– volume: 17
  start-page: 1132
  year: 2011
  end-page: 1135
  ident: 2020.12.28.424605v1.10
  article-title: Identification of nucleolin as a cellular receptor for human respiratory syncytial virus
  publication-title: Nat Med
  doi: 10.1038/nm.2444
– start-page: 307
  year: 2013
  end-page: 315
  ident: 2020.12.28.424605v1.34
  article-title: Cargo trafficking between endosomes and the trans-Golgi network
  publication-title: Histochemistry and Cell Biology
  doi: 10.1007/s00418-013-1125-6
– volume: 35
  start-page: 3602
  year: 2007
  end-page: 11
  ident: 2020.12.28.424605v1.36
  article-title: Dynamics of filamentous viral RNPs prior to egress
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkm246
– volume: 195
  start-page: 243
  year: 1993
  end-page: 7
  ident: 2020.12.28.424605v1.11
  article-title: Cytoplasmic inclusions of respiratory syncytial virus-infected cells: formation of inclusion bodies in transfected cells that coexpress the nucleoprotein, the phosphoprotein, and the 22K protein
  publication-title: Virology
  doi: 10.1006/viro.1993.1366
– year: 2014
  ident: 2020.12.28.424605v1.31
  article-title: Interaction of HIV-1 nef protein with the host protein Alix promotes lysosomal targeting of cd4 receptor
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M114.560193
– volume: 89: JVI
  start-page: 03500
  year: 2015
  end-page: 14
  ident: 2020.12.28.424605v1.20
  article-title: Dimerization of Matrix protein is required for budding of Respiratory Syncytial Virus
  publication-title: J Virol
  doi: 10.1128/JVI.03500-14
– year: 2015
  ident: 2020.12.28.424605v1.22
  article-title: Identification and Characterization of the Binding Site of the Respiratory Syncytial Virus Phosphoprotein to RNA-Free Nucleoprotein
  publication-title: J Virol
  doi: 10.1128/jvi.03666-14
– year: 2019
  ident: 2020.12.28.424605v1.43
  article-title: The alpha-1 subunit of the Na+,K+-ATPase (ATP1A1) is required for macropinocytic entry of respiratory syncytial virus (RSV) in human respiratory epithelial cells
  publication-title: PLoS Pathog
  doi: 10.1371/journal.ppat.1007963
– year: 2012
  ident: 2020.12.28.424605v1.40
  article-title: Respiratory syncytial virus persistence in macrophages alters the profile of cellular gene expression
  publication-title: Viruses
  doi: 10.3390/v4123270
– volume: 7
  year: 2012
  ident: 2020.12.28.424605v1.4
  article-title: High rates of detection of respiratory viruses in tonsillar tissues from children with chronic adenotonsillar disease
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0042136
– volume: 74
  start-page: 6442
  year: 2000
  end-page: 7
  ident: 2020.12.28.424605v1.7
  article-title: The fusion glycoprotein of human respiratory syncytial virus facilitates virus attachment and infectivity via an interaction with cellular heparan sulfate
  publication-title: J Virol
  doi: 10.1128/JVI.74.14.6442-6447.2000.Updated
– year: 2012
  ident: 2020.12.28.424605v1.28
  publication-title: A Critical Phenylalanine Residue in the Respiratory Syncytial Virus Fusion Protein Cytoplasmic Tail Mediates Assembly of Internal Viral
  doi: 10.1128/mBio.00270-11.Editor
– volume: 27
  start-page: 1112
  year: 2007
  end-page: 24
  ident: 2020.12.28.424605v1.37
  article-title: Interchangeable but essential functions of SNX1 and SNX2 in the association of retromer with endosomes and the trafficking of mannose 6-phosphate receptors
  publication-title: Mol Cell Biol
  doi: 10.1128/MCB.00156-06
– start-page: 1086
  year: 2013
  end-page: 1123
  ident: 2020.12.28.424605v1.1
  article-title: Respiratory Syncytial Virus and Metapneumovirus
  publication-title: Fields Virology
– volume: 79
  start-page: 12528
  year: 2005
  end-page: 35
  ident: 2020.12.28.424605v1.15
  article-title: The transmembrane domain of the respiratory syncytial virus F protein is an orientation-independent apical plasma membrane sorting sequence
  publication-title: J Virol
  doi: 10.1128/JVI.79.19.12528-12535.2005
– year: 2009
  ident: 2020.12.28.424605v1.18
  article-title: Respiratory Syncytial Virus Grown in Vero Cells Contains a Truncated Attachment Protein That Alters Its Infectivity and Dependence on Glycosaminoglycans
  publication-title: J Virol
  doi: 10.1128/jvi.00986-09
– volume: 46
  start-page: 301
  year: 2017
  end-page: 314
  ident: 2020.12.28.424605v1.30
  article-title: Respiratory Syncytial Virus Infects Regulatory B Cells in Human Neonates via Chemokine Receptor CX3CR1 and Promotes Lung Disease Severity
  publication-title: Immunity
  doi: 10.1016/j.immuni.2017.01.010
– year: 2000
  ident: 2020.12.28.424605v1.41
  article-title: Pattern recognition receptors TLR4 and CD14 mediate response to respiratory syncytial virus
  publication-title: Nat Immunol
  doi: 10.1038/80833
– year: 2020
  ident: 2020.12.28.424605v1.24
  article-title: Host retromer protein sorting nexin 2 interacts with human respiratory syncytial virus structural proteins and is required for efficient viral production
  publication-title: MBio
  doi: 10.1128/mBio.01869-20
– year: 2020
  ident: 2020.12.28.424605v1.32
  article-title: A molecularly engineered antiviral banana lectin inhibits fusion and is efficacious against influenza virus infection in vivo
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.1915152117
– volume: 300
  start-page: 244
  year: 2002
  end-page: 254
  ident: 2020.12.28.424605v1.21
  article-title: Sorting of the Respiratory Syncytial Virus Matrix Protein into Detergent-Resistant Structures Is Dependent on Cell-Surface Expression of the Glycoproteins
  publication-title: Virology
  doi: 10.1006/viro.2002.1540
– volume: 152
  start-page: 2259
  year: 2007
  end-page: 63
  ident: 2020.12.28.424605v1.12
  article-title: Intracellular localization of human respiratory syncytial virus L protein
  publication-title: Arch Virol
  doi: 10.1007/s00705-007-1048-4
– volume: 86
  start-page: 8245
  year: 2012
  end-page: 58
  ident: 2020.12.28.424605v1.13
  article-title: Human respiratory syncytial virus nucleoprotein and inclusion bodies antagonize the innate immune response mediated by MDA5 and MAVS
  publication-title: J Virol
  doi: 10.1128/JVI.00215-12
– year: 2017
  ident: 2020.12.28.424605v1.5
  article-title: Respiratory syncytial virus (RSV) infects CD4+ T cells: Frequency of circulating CD4+ RSV+ T cells as a marker of disease severity in young children
  publication-title: Journal of Infectious Diseases
  doi: 10.1093/infdis/jix070
– year: 1987
  ident: 2020.12.28.424605v1.6
  article-title: Demonstration that glycoprotein G is the attachment protein of respiratory syncytial virus
  publication-title: J Gen Virol
  doi: 10.1099/0022-1317-68-9-2521
– year: 2015
  ident: 2020.12.28.424605v1.42
  article-title: Respiratory Syncytial Virus Uses CX3CR1 as a Receptor on Primary Human Airway Epithelial Cultures
  publication-title: PLoS Pathog
  doi: 10.1371/journal.ppat.1005318
– volume: 83
  start-page: 1841
  year: 2002
  end-page: 50
  ident: 2020.12.28.424605v1.39
  article-title: Respiratory syncytial virus assembly occurs in GM1-rich regions of the host-cell membrane and alters the cellular distribution of tyrosine phosphorylated caveolin-1
  publication-title: J Gen Virol
SSID ssj0002961374
Score 1.6108803
SecondaryResourceType preprint
Snippet Abstract Human respiratory syncytial virus is the most frequent cause of severe respiratory disease in children. The main targets of HRSV infection are...
Human respiratory syncytial virus is the most frequent cause of severe respiratory disease in children. The main targets of HRSV infection are epithelial cells...
SourceID biorxiv
proquest
SourceType Open Access Repository
Aggregation Database
SubjectTerms CD4 antigen
Cell lineage
Epithelial cells
Filaments
Flow cytometry
Fluorescence in situ hybridization
Inclusion bodies
Infections
Lymphocytes T
Lymphoid cells
Microbiology
Proteins
Replication
Respiratory diseases
Respiratory syncytial virus
Respiratory tract
Virions
Viruses
Title The replication of the human respiratory syncytial virus in a T cell line has multiple ineffective steps
URI https://www.proquest.com/docview/2505917204
https://www.biorxiv.org/content/10.1101/2020.12.28.424605
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NS8MwFA-6KXjyG6dzRPDa2aZJ2p4EZUMPjiIT5qkkacoK0tZ2G-6_96Xt5kHw4rG8Ukryvn-P90PoNvCk7yimLc0TZVHmKUtqyiymEq1cbQvhqppswptM_NksCNuGW9WOVW58Yu2o41yZHvmdCdVQWhCb3heflmGNMuhqS6Gxi7pmS4Jbj-6F2x4LCSBY1YuYCQ_A8InNWmATFNGU_Wa5wpD4Q0oMPAgpsEzz8itd_XLMdbQZH_73P49QNxSFLo_Rjs5O0H7DN7k-RXNQClzqLWSN8wRDAohroj4QbFF3XK3B6YLxf-BVWi4rnGZY4Ck2bX5sElM8FxXeDCOCtBkLAc-JQWuK6gy9jUfTxyerpVqwJNRjzPKFJzn1mGQyJlxKl2snEb7DYiU4F9xsBuMelYrD-66itmTKVgbEVYEWJHbPUSfLM32BsJTapjSBskq4NHG4LyHkcc5kEkPxyIIeumlPOSqahRqRuYnIIRHxo-Ymeqi_Odyotakq-jnZy7_FV-jAfNEMnRC_jzqLcqmv0Z5aLdKqHKDuw2gSvg5qVYGn8PklfP8GA3PGrQ
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LT9tAEB5BANETj1JBm8IiwdFgr3fX60PVAy0iAqIcggQnd3e9VixVSbBJaP5Uf2Nn_QgHpN44cB5rJe83nm9engE4iSMtA8OtZ0VmPMYj42nLuMdNZk1ofaVCUy2biPp9eX8fD1bgb_svjGurbG1iZajTiXE58nNH1RhaUJ99nz56bmuUq662KzRqtbi2i2cM2cpvvR-I7ymllz-HF1des1XA0xh6cE-qSAsWcc11SoXWobBBpmTAU6OEUMINwRIR00bg86FhvubGN65eaWKraBriuauwxlDZZQfWBr3bwcMyq0NjpMdq9DMVMZoa6vOmlIqq7xINbpzDGZVnjLqCJDrdOp8Uf_L5Kyqo-O1y673dzDbeiJraYgdW7HgXNuqNmouPMEK1J4VdFuXJJCPo4pJqFSEKln0FpFwgraB5-03meTErST4migyJK2QQ53qTkSpJ226J0rrxBbmB4HcxLffg7k1e7hN0xpOx3QeitfUZyzBwVCHLAiE1kroQXGcphsc8PoDjBtVkWo8MSRzySUATKpMa-QPotmAmjdUokxckP_9ffASbV8Pbm-Sm17_-Ah_c6a7FhsoudJ6Kmf0K62b-lJfFYaOgBH69NfL_AF_oIO8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+replication+of+the+human+respiratory+syncytial+virus+in+a+T+cell+line+has+multiple+ineffective+steps&rft.jtitle=bioRxiv&rft.au=De+Souza+Cardoso%2C+Ricardo&rft.au=Ana+Carolina+Lunardello+Coelho&rft.au=Bruna+La%C3%ADs+Santos+De+Jesus&rft.au=Vitti%2C+Brenda+Cristina&rft.date=2020-12-28&rft.pub=Cold+Spring+Harbor+Laboratory+Press&rft.issn=2692-8205&rft.eissn=2692-8205&rft_id=info:doi/10.1101%2F2020.12.28.424605
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2692-8205&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2692-8205&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2692-8205&client=summon