Principles of Catastrophic Forgetting for Continual Semantic Segmentation in Automated Driving

Deep learning excels at extracting complex patterns but faces catastrophic forgetting when fine-tuned on new data. This book investigates how class- and domain-incremental learning affect neural networks for automated driving, identifying semantic shifts and feature changes as key factors. Tools for...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Kalb, Tobias Michael
Format: E-Book
Sprache:Englisch
Veröffentlicht: KIT Scientific Publishing 2024
Schriftenreihe:Karlsruher Schriften zur Anthropomatik
Schlagworte:
ISBN:3731513730, 9783731513735
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Deep learning excels at extracting complex patterns but faces catastrophic forgetting when fine-tuned on new data. This book investigates how class- and domain-incremental learning affect neural networks for automated driving, identifying semantic shifts and feature changes as key factors. Tools for quantitatively measuring forgetting are selected and used to show how strategies like image augmentation, pretraining, and architectural adaptations mitigate catastrophic forgetting.
ISBN:3731513730
9783731513735
DOI:10.5445/KSP/1000171902