Principles of Catastrophic Forgetting for Continual Semantic Segmentation in Automated Driving

Deep learning excels at extracting complex patterns but faces catastrophic forgetting when fine-tuned on new data. This book investigates how class- and domain-incremental learning affect neural networks for automated driving, identifying semantic shifts and feature changes as key factors. Tools for...

Celý popis

Uloženo v:
Podrobná bibliografie
Hlavní autor: Kalb, Tobias Michael
Médium: E-kniha
Jazyk:angličtina
Vydáno: KIT Scientific Publishing 2024
Edice:Karlsruher Schriften zur Anthropomatik
Témata:
ISBN:3731513730, 9783731513735
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Deep learning excels at extracting complex patterns but faces catastrophic forgetting when fine-tuned on new data. This book investigates how class- and domain-incremental learning affect neural networks for automated driving, identifying semantic shifts and feature changes as key factors. Tools for quantitatively measuring forgetting are selected and used to show how strategies like image augmentation, pretraining, and architectural adaptations mitigate catastrophic forgetting.
ISBN:3731513730
9783731513735
DOI:10.5445/KSP/1000171902