Remote Sensing Digital Image Analysis An Introduction

Possibly the greatest change confronting the practitioner and student of remote sensing in the period since the first edition of this text appeared in 1986 has been the enormous improvement in accessibility to image processing technology. Falling hardware and software costs, combined with an increas...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Richards, John A
Format: E-Book
Sprache:Englisch
Veröffentlicht: Berlin, Heidelberg Springer Berlin / Heidelberg 1993
Springer Berlin Heidelberg
Ausgabe:2
Schlagworte:
ISBN:3540582193, 9783540582199, 9783642880889, 3540548408, 9783540548409, 3642880886
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Possibly the greatest change confronting the practitioner and student of remote sensing in the period since the first edition of this text appeared in 1986 has been the enormous improvement in accessibility to image processing technology. Falling hardware and software costs, combined with an increase in functionality through the development of extremely versatile user interfaces, has meant that even the user unskilled in computing now has immediate and ready access to powerful and flexible means for digital image analysis and enhancement. An understanding, at algorithmic level, of the various methods for image processing has become therefore even more important in the past few years to ensure the full capability of digital image processing is utilised. This period has also been a busy one in relation to digital data supply. Several nations have become satellite data gatherers and providers, using both optical and microwave technology. Practitioners and researchers are now faced, therefore, with the need to be able to process imagery from several sensors, together with other forms of spatial data. This has been driven, to an extent, by developments in Geographic Information Systems (GIS) which, in tum, have led to the appearance of newer image processing procedures as adjuncts to more traditional approaches.
AbstractList Possibly the greatest change confronting the practitioner and student of remote sensing in the period since the first edition of this text appeared in 1986 has been the enormous improvement in accessibility to image processing technology. Falling hardware and software costs, combined with an increase in functionality through the development of extremely versatile user interfaces, has meant that even the user unskilled in computing now has immediate and ready access to powerful and flexible means for digital image analysis and enhancement. An understanding, at algorithmic level, of the various methods for image processing has become therefore even more important in the past few years to ensure the full capability of digital image processing is utilised. This period has also been a busy one in relation to digital data supply. Several nations have become satellite data gatherers and providers, using both optical and microwave technology. Practitioners and researchers are now faced, therefore, with the need to be able to process imagery from several sensors, together with other forms of spatial data. This has been driven, to an extent, by developments in Geographic Information Systems (GIS) which, in tum, have led to the appearance of newer image processing procedures as adjuncts to more traditional approaches.
Author Richards, John A
Author_xml – sequence: 1
  fullname: Richards, John A
BookMark eNp9j8tKw0AUhke8YFv7AO6yEVdj535Z1lq1UBBU3A6TyUmNpknNRMG3d9q6FM_mwM__Hc43REdN2wBC55RcUUL0xGqDOVaCYWOI0ZgdoHHKeEp2ATtEQy4FkYZRy0_QwHLFqaJCnKJxjG8kTeoxowfo4hHWbQ_ZEzSxalbZTbWqel9ni7VfQTZtfP0dq3iGjktfRxj_7hF6uZ0_z-7x8uFuMZsusTdSSIV1qZkIpsxFTpgRpS65CNbqwIrcFoXKCwpQBhk0GMJzMJKwYIw0hRCKF4SP0GR_OG669A50Lm_b9-gocVt1lzQdd0nU7UwdS4T6g_BdeK2-4H_wcg9uuvbjE2LvYEsGaPrO125-PePEai4p_wFvV2gL
ContentType eBook
Copyright Springer-Verlag Berlin Heidelberg 1993
Copyright_xml – notice: Springer-Verlag Berlin Heidelberg 1993
CorporateAuthor SpringerLink (Online service)
CorporateAuthor_xml – name: SpringerLink (Online service)
DEWEY 621.3678
DOI 10.1007/978-3-642-88087-2
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Geography
Visual Arts
Engineering
EISBN 9783642880872
3642880878
Edition 2
Second, Revised and Enlarged Edition.
Second, Revised and Enlarged Edition
ExternalDocumentID 18991
10.1007/978-3-642-88087-2
EBC3097351
GroupedDBID AABBV
ABARN
ABQPQ
ACLGV
ADVEM
AERYV
AEZAY
AFOJC
AHWGJ
AJFER
ALMA_UNASSIGNED_HOLDINGS
AZZ
BBABE
GEOUK
JJU
SBO
~1X
38.
50X
AAJGY
AARNW
ADHHQ
ADZXD
AEKFX
AGEPW
AGEUI
AKVJN
AURUN
CZZ
NIOIY
OSLNF
SYRPR
~56
ID FETCH-LOGICAL-a85456-7f724c8fb4b0284f7f34c997c2db9dd6bd1eefc5c7e803be8502c8858d4463d03
ISBN 3540582193
9783540582199
9783642880889
3540548408
9783540548409
3642880886
IngestDate Fri May 23 03:29:38 EDT 2025
Sun Jul 27 06:38:42 EDT 2025
Wed Nov 26 06:13:44 EST 2025
IsPeerReviewed false
IsScholarly false
LCCallNum_Ident G70.212-.217
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-a85456-7f724c8fb4b0284f7f34c997c2db9dd6bd1eefc5c7e803be8502c8858d4463d03
OCLC 936316144
PQID EBC3097351
PageCount 351
ParticipantIDs springer_books_10_1007_978_3_642_88087_2
springer_bookarchives_10_1007_978_3_642_88087_2
proquest_ebookcentral_EBC3097351
PublicationCentury 1900
PublicationDate 1993
1993.
PublicationDateYYYYMMDD 1993-01-01
PublicationDate_xml – year: 1993
  text: 1993
PublicationDecade 1990
PublicationPlace Berlin, Heidelberg
PublicationPlace_xml – name: Berlin, Heidelberg
PublicationYear 1993
Publisher Springer Berlin / Heidelberg
Springer Berlin Heidelberg
Publisher_xml – name: Springer Berlin / Heidelberg
– name: Springer Berlin Heidelberg
SSID ssj0000808287
ssib050567979
ssj0001899900
Score 1.796165
Snippet Possibly the greatest change confronting the practitioner and student of remote sensing in the period since the first edition of this text appeared in 1986 has...
SourceID springer
proquest
SourceType Publisher
SubjectTerms Aquatic Pollution
Atmospheric Protection/Air Quality Control/Air Pollution
Earth and Environmental Science
Environmental pollution
Environmental protection
Geographical information systems
Geographical Information Systems/Cartography
Geography
Noise Control
Remote sensing
Soil conservation
Soil Science & Conservation
Waste disposal
Waste Management/Waste Technology
Waste Water Technology
Waste Water Technology / Water Pollution Control / Water Management / Aquatic Pollution
Water Management
Water Pollution Control
Subtitle An Introduction
TableOfContents Intro -- Remote Sensing Digital Image Analysis An Introduction Second, Revised and Enlarged Edition -- Copyright -- Preface to the Second Edition -- Preface to the First Edition -- Contents -- Chapter 1 Sources and Characteristics of Remote Sensing Image Data -- Chapter 2 Error Correction and Registration of Image Data -- Chapter 3 The Interpretation of Digital Image Data -- Chapter 4 Radiometric Enhancement Techniques -- Chapter 5 Geometric Enhancement Using Image Domain Techniques -- Chapter 6 Multispectral Transformations of Image Data -- Chapter 7 Fourier Transformation of Image Data -- Chapter 8 Supervised Classification Techniques -- Chapter 9 Clustering and Unsupervised Classification -- Chapter 10 Feature Reduction -- Chapter 11 Image Classification Methodologies -- Chapter 12 Knowledge-Based Image Analysis -- Appendix A Satellite Altitudes and Periods -- Appendix B Binary Representation of Decimal Numbers -- Appendix C Essential Results from Vector and Matrix Algebra -- Appendix D Some Fundamental Material from Probability and Statistics -- Appendix E Penalty Function Derivation of the Maximum Likelihood Decision Rule -- Appendix F Real Time Image Processing in Interactive Image Display Systems -- Subject Index
1 — Sources and Characteristics of Remote Sensing Image Data -- 1.1 Introduction to Data Sources -- 1.1.1 Characteristics of Digital Image Data -- 1.1.2 Spectral Ranges Commonly Used in Remote Sensing -- 1.1.3 Concluding Remarks -- 1.2 Weather Satellite Sensors -- 1.2.1 Polar Orbiting and Geosynchronous Satellites -- 1.2.2 The NOAA AVHRR (Advanced Very High Resolution Radiometer) -- 1.2.3 The Nimbus CZCS (Coastal Zone Colour Scanner) -- 1.2.4 GMS VISSR (Visible and Infrared Spin Scan Radiometer) -- 1.3 Earth Resource Satellite Sensors in the Visible and Infrared Regions -- 1.3.1 The Landsat System -- 1.3.2 The Landsat Instrument Complement -- 1.3.3 The Return Beam Vidicon(RBV) -- 1.3.4 The Multispectral Scanner (MSS) -- 1.3.5 The Thematic Mapper (TM) -- 1.3.6 The SPOT High Resolution Visible (HRV) Imaging Instrument -- 1.3.7 The Skylab S 192 Multispectral Scanner -- 1.3.8 The Heat Capacity Mapping Radiometer (HCMR) -- 1.3.9 Marine Observation Satellite (MOS) -- 1.3.10 Indian Remote Sensing Satellite (IRS) -- 1.4 Aircraft Scanners in the Visible and Infrared Regions -- 1.4.1 General Considerations -- 1.4.2 The Daedalus AADS 1240/1260 Multispectral Line Scanner -- 1.4.3 The Airborne Thematic Mapper (ATM) -- 1.4.4 The Thermal Infrared Multispectral Scanner (TIMS) -- 1.4.5 The MDA MEIS-II Linear Array Aircraft Scanner -- 1.4.6 Imaging Spectrometers -- 1.5 Image Data Sources in the Microwave Region -- 1.5.1 Side Looking Airborne Radar and Synthetic Aperture Radar -- 1.5.2 TheSeasatSAR -- 1.5.3 Shuttle Imaging Radar-A (SIR-A) -- 1.5.4 Shuttle Imaging Radar-B(SIR-B) -- 1.5.5 ERS-1 -- 1.5.6 JERS-1 -- 1.5.7 Radarsat -- 1.5.8 Aircraft Imaging Radar Systems -- 1.6 Spatial Data Sources in General -- 1.6.1 Types of Spatial Data -- 1.6.2 Data Formats -- 1.6.3 Geographic Information Systems (GIS) -- 1.6.4 The Challenge to Image Processing and Analysis -- 1.7 A Comparison of Scales in Digital Image Data -- References for Chapter 1 -- Problems -- 2 — Error Correction and Registration of Image Data -- 2.1 Sources of Radiometric Distortion -- 2.1.1 The Effect of the Atmosphere on Radiation -- 2.1.2 Atmospheric Effects on Remote Sensing Imagery -- 2.1.3 Instrumentation Errors -- 2.2 Correction of Radiometric Distortion -- 2.2.1 Detailed Correction of Atmospheric Effects -- 2.2.2 Bulk Correction of Atmospheric Effects -- 2.2.3 Correction of Instrumentation Errors -- 2.3 Sources of Geometric Distortion -- 2.3.1 Earth Rotation Effects -- 2.3.2 Panoramic Distortion -- 2.3.3 Earth Curvature -- 2.3.4 Scan Time Skew -- 2.3.5 Variations in Platform Altitude, Velocity and Attitude -- 2.3.6 Aspect Ratio Distortion -- 2.3.7 Sensor Scan Nonlinearities -- 2.4 Correction of Geometric Distortion -- 2.4.1 Use of Mapping Polynomials for Image Correction -- 2.4.1.1 Mapping Polynomials and Ground Control Points -- 2.4.1.2 Resampling -- 2.4.1.3 Interpolation -- 2.4.1.4 Choice of Control Points -- 2.4.1.5 Example of Registration to a Map Grid -- 2.4.2 Mathematical Modelling -- 2.4.2.1 Aspect Ratio Correction -- 2.4.2.2 Earth Rotation Skew Correction -- 2.4.2.3 Image Orientation to North-South -- 2.4.2.4 Correction of Panoramic Effects -- 2.4.2.5 Combining the Corrections -- 2.5 Image Registration -- 2.5.1 Georeferencing and Geocoding -- 2.5.2 Image to Image Registration -- 2.5.3 Sequential Similarity Detection Algorithm -- 2.5.4 Example of Image to Image Registration -- 2.6 Miscellaneous Image Geometry Operations -- 2.6.1 Image Rotation -- 2.6.2 Scale Changing and Zooming -- References for Chapter 2 -- Problems -- 3 — The Interpretation of Digital Image Data -- 3.1 Two Approaches to Interpretation -- 3.2 Forms of Imagery for Photointerpretation -- 3.3 Computer Processing for Photointerpretation -- 3.4 An Introduction to Quantitative Analysis — Classification -- 3.5 Multispectral Space and Spectral Classes -- 3.6 Quantitative Analysis by Pattern Recognition -- 3.6.1 Pixel Vectors and Labelling -- 3.6.2 Unsupervised Classification -- 3.6.3 Supervised Classification -- References for Chapter 3 -- Problems -- 4 — Radiometric Enhancement Techniques -- 4.1 Introduction -- 4.1.1 Point Operations and Look Up Tables -- 4.1.2 Scalar and Vector Images -- 4.2 The Image Histogram -- 4.3 Contrast Modification in Image Data -- 4.3.1 Histogram Modification Rule -- 4.3.2 Linear Contrast Enhancement -- 4.3.3 Saturating Linear Contrast Enhancement -- 4.3.4 Automatic Contrast Enhancement -- 4.3.5 Logarithmic and Exponential Contrast Enhancement -- 4.3.6 Piecewise Linear Contrast Modification -- 4.4 Histogram Equalization -- 4.4.1 Use of the Cumulative Histogram -- 4.4.2 Anomalies in Histogram Equalization -- 4.5 Histogram Matching -- 4.5.1 Principle of Histogram Matching -- 4.5.2 Image to Image Contrast Matching -- 4.5.3 Matching to a Mathematical Reference -- 4.6 Density Slicing -- 4.6.1 Black and White Density Slicing -- 4.6.2 Colour Density Slicing and Pseudocolouring -- References for Chapter 4 -- Problems -- 5 — Geometric Enhancement Using Image Domain Techniques -- 5.1 Neighbourhood Operations -- 5.2 Template Operators -- 5.3 Geometric Enhancement as a Convolution Operation -- 5.4 ImageDomain Versus Fourier Transformation Approaches -- 5.5 Image Smoothing (Low Pass Filtering) -- 5.5.1 Mean Value Smoothing -- 5.5.2 Median Filtering -- 5.6 Edge Detection and Enhancement -- 5.6.1 Linear Edge Detecting Templates -- 5.6.2 Spatial Derivative Techniques -- 5.6.2.1 The Roberts Operator -- 5.6.2.2 The Sobel Operator -- 5.6.3 Thinning, Linking and Edge Responses -- 5.6.4 Edge Enhancement by Subtractive Smoothing -- 5.7 Line Detection -- 5.7.1 Linear Line Detecting Templates -- 5.7.2 Non-linear and Semi-linear Line Detecting Templates -- 5.8 General Convolution Filtering -- 5.9 Shape Detection -- References for Chapter 5 -- Problems -- 6 — Multispectral Transformations of Image Data -- 6.1 The Principal Components Transformation -- 6.1.1 The Mean Vector and Covariance Matrix -- 6.1.2 A Zero Correlation, Rotational Transform -- 6.1.3 An Example — Some Practical Considerations -- 6.1.4 The Effect of an Origin Shift -- 6.1.5 Application of Principal Components in Image Enhancement and Display -- 6.1.6 The Taylor Method of Contrast Enhancement -- 6.1.7 Other Applications of Principal Components Analysis -- 6.2 The Kauth-Thomas Tasseled Cap Transformation -- 6.3 Image Arithmetic, Band Ratios and Vegetation Indices -- References for Chapter 6 -- Problems -- 7 — Fourier Transformation of Image Data -- 7.1 Introduction -- 7.2 Special Functions -- 7.2.1 The Complex Exponential Function -- 7.2.2 The Dirac Delta Function -- 7.2.2.1 Properties of the Delta Function -- 7.2.3 The Heaviside Step Function -- 7.3 Fourier Series -- 7.4 The Fourier Transform -- 7.5 Convolution -- 7.5.1 The Convolution Integral -- 7.5.2 Convolution with an Impulse -- 7.5.3 The Convolution Theorem -- 7.6 Sampling Theory -- 7.7 The Discrete Fourier Transform -- 7.7.1 The Discrete Spectrum -- 7.7.2 Discrete Fourier Transform Formulae -- 7.7.3 Properties of the Discrete Fourier Transform -- 7.7.4 Computation of the Discrete Fourier Transform -- 7.7.5 Development of the Fast Fourier Transform Algorithm -- 7.7.6 Computational Cost of the Fast Fourier Transform -- 7.7.7 Bit Shuffling and Storage Considerations -- 7.8 The Discrete Fourier Transform of an Image -- 7.8.1 Definition -- 7.8.2 Evaluation of the Two Dimensional, Discrete Fourier Transform -- 7.8.3 The Concept of Spatial Frequency -- 7.8.4 Image Filtering for Geometric Enhancement -- 7.8.5 Convolution in Two Dimensions -- 7.9 Concluding Remarks -- References for Chapter 7 -- Problems -- Chapters 8—Supervised Classification Techniques -- I. Standard Classification Algorithms -- 8.1 Steps in Supervised Classification -- 8.2 Maximum Likelihood Classification -- 8.2.1 Bayes’Classification -- 8.2.2 The Maximum Likelihood Decision Rule -- 8.2.3 Multivariate Normal Class Models -- 8.2.4 Decision Surfaces -- 8.2.5 Thresholds -- 8.2.6 Number of Training Pixels Required for Each Class -- 8.2.7 A Simple Illustration -- 8.3 Minimum Distance Classification -- 8.3.1 The Case of Limited Training Data -- 8.3.2 The Discriminant Function -- 8.3.3 Degeneration of Maximum Likelihood to Minimum Distance Classification -- 8.3.4 Decision Surfaces -- 8.3.5 Thresholds -- 8.4 Parallelepiped Classification -- 8.5 Classification Time Comparison of the Classifiers -- 8.6 The Mahalanobis Classifier -- 8.7 Table Look Up Classification -- II. More Advanced Considerations -- 8.8 Context Classification -- 8.8.1 The Concept of Spatial Context -- 8.8.2 Context Classification by Image Pre-Processing -- 8.8.3 Post Classification Filtering -- 8.8.4 Probabilistic Label Relaxation -- 8.8.4.1 The Basic Algorithm -- 8.8.4.2 The Neighbourhood Function -- 8.8.4.3 Determining the Compatibility Coefficients -- 8.8.4.4 The Final Step – Stopping the Process -- 8.8.4.5 Examples -- 8.9 Classification of Mixed Image Data -- 8.9.1 The Stacked Vector Approach -- 8.9.2 Statistical Methods -- 8.9.3 The Theory of Evidence -- 8.9.3.1 The Concept of Evidential Mass -- 8.9.3.2 Combining Evidence – the Orthogonal Sum -- 8.9.3.3 Decision Rule -- 8.10 Classification Using Neural Networks -- 8.10.1 Linear Discrimination -- 8.10.1.1 Concept of a Weight Vector -- 8.10.1.2 Testing Class Membership -- 8.10.1.3 Training -- 8.10.1.4 Setting the Correction Increment -- 8.10.1.5 Classification – The Threshold Logic Unit -- 8.10.1.6 Multicategory Classification -- 8.10.2 Networks of Classifiers – Solutions of Nonlinear Problems -- 8.10.3 The Neural Network Approach -- 8.10.3.1 The Processing Element -- 8.10.3.2 Training the Neural Network – Backpropagation -- 8.10.3.3 Choosing the Network Parameters -- 8.10.3.4 Examples -- References for Chapter 8 -- Problems -- 9 — Clustering and Unsupervised Classification -- 9.1 Delineation of Spectral Classes -- 9.2 Similarity Metrics and Clustering Criteria -- 9.3 The Iterative Optimization (Migrating Means) Clustering Algorithm -- 9.3.1 The Basic .
Title Remote Sensing Digital Image Analysis
URI https://ebookcentral.proquest.com/lib/[SITE_ID]/detail.action?docID=3097351
https://doi.org/10.1007/978-3-642-88087-2
http://link.springer.com/10.1007/978-3-642-88087-2
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3LT9swGLd4TXDjNa1joByGhFSFJXFS28cBZatAhQMgblb8Yp20MLUFlf-ez47dkiKh7cAlysOJHP9i53v-PoS-JiUWpVZprI1hcU5NJxY6FzGRRZKatCwKR6V0c076fXp7yy49wePIlRMgVUUnE_b3XaGGcwC2TZ39D7inD4UTsA-gwxZgh-2cRDw99PzaGoZdw-yvnP5_MrizBUHavT82LCeQj0wdLD7fKoTjtr8fzgwAdbhdwwAQDIDtN_ixvH3HJsXW5YheLZwvYyVAJYlhWsPqk83-EsEz3r_glyen_LzXP2terFUKUN9AF10kHVhtln90L67Pwuy2ohZh3if4u5ZVLdu-T7hxfcMfpraouq_BD-2pgBt9a-gEc25sJx1craNlbVNGNtCCrjbRqq8r_-tpC-3XmEQek8hjEjlMooDJNro57V4d_4x9YYq4pFbijIkhWS6pEbkA-Sw3xOBcMkZkpgRTqiNUqrWRhSSaJlhoWiSZpLSgCrRvrBL8ES1V95X-hCKsXSNlChBN04RRQk2JTcZKJhlRooWi8Jbc-c990C7vHh1jy7VUpC30Lbw9ty1Kz1nMAyU1DB3HHIaOu6HjWQsdNO54o-nnf2-6g9Zm3-cXtDQePuhdtCIfx4PRcM9_Ds8vGzf4
linkProvider ProQuest Ebooks
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.title=Remote+Sensing+Digital+Image+Analysis&rft.au=Richards%2C+John+A.&rft.date=1993-01-01&rft.pub=Springer+Berlin+Heidelberg&rft.isbn=9783540582199&rft_id=info:doi/10.1007%2F978-3-642-88087-2&rft.externalDBID=NO_PDF_LINK&rft.externalDocID=18991
thumbnail_s http://cvtisr.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fmedia.springernature.com%2Fw306%2Fspringer-static%2Fcover-hires%2Fbook%2F978-3-642-88087-2