Curves and surfaces for CAGD : a practical guide

This fifth edition has been fully updated to cover the many advances made in CAGD and curve and surface theory since 1997, when the fourth edition appeared.Material has been restructured into theory and applications chapters.

Uloženo v:
Podrobná bibliografie
Hlavní autor: Farin, Gerald E.
Médium: E-kniha Kniha
Jazyk:angličtina
Vydáno: San Francisco, Calif Morgan Kaufmann 2002
Elsevier Science & Technology
Vydání:5
Edice:The Morgan Kaufmann series in computer graphics and geometric
Témata:
ISBN:1558607374, 9781558607378
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract This fifth edition has been fully updated to cover the many advances made in CAGD and curve and surface theory since 1997, when the fourth edition appeared.Material has been restructured into theory and applications chapters.
AbstractList This fifth edition has been fully updated to cover the many advances made in CAGD and curve and surface theory since 1997, when the fourth edition appeared. Material has been restructured into theory and applications chapters. The theory material has been streamlined using the blossoming approach; the applications material includes least squares techniques in addition to the traditional interpolation methods. In all other respects, it is, thankfully, the same. This means you get the informal, friendly style and unique approach that has made Curves and Surfaces for CAGD: A Practical Guide a true classic.The book's unified treatment of all significant methods of curve and surface design is heavily focused on the movement from theory to application. The author provides complete C implementations of many of the theories he discusses, ranging from the traditional to the leading-edge. You'll gain a deep, practical understanding of their advantages, disadvantages, and interrelationships, and in the process you'll see why this book has emerged as a proven resource for thousands of other professionals and academics. * Provides authoritative and accessible information for those working with or developing computer-aided geometric design applications.* Covers all significant CAGD curve and surface design techniques-from the traditional to the experimental.* Includes a new chapter on recursive subdivision and triangular meshes.* Presents topical programming exercises useful to professionals and students alike.* Offers complete C implementations of many of the book's examples via a companion Web site.
This fifth edition has been fully updated to cover the many advances made in CAGD and curve and surface theory since 1997, when the fourth edition appeared.Material has been restructured into theory and applications chapters.
Author Farin, Gerald E.
Author_xml – sequence: 1
  fullname: Farin, Gerald E.
BackLink https://cir.nii.ac.jp/crid/1130000796104854016$$DView record in CiNii
BookMark eNpVkEtLw1AQha9oxbb2P2QhgovC3Ofc667G-oCCG3Eb7isaG5Kam9S_b2rdOIs5DHwc5pwZOWvaJp6QhUENoEEClwJPyYxKqRUgRzEhMwZAwQiO_JxMR6GGIqgLskjpE8ahXFAQUwL50O1jymwTsjR0pfXjUbZdlq8e77PbzGa7zvq-8rbO3ocqxEsyKW2d4uJP5-TtYf2aPy03L4_P-WqztCgZlUtUPhilvEEUzoYyMB-scUo6LTzEyJnmQZXIVVAOVcmMo4pH5h0ox73mc3JzNLZpG7_TR1v3qdjX0bXtNhX_wo_s9ZHdde3XEFNf_GI-Nn1n62J9l3OqGR5Mr45gU1WFrw6bUn4oBI0aC9FSwPjGD8QfX5Y
ContentType eBook
Book
DBID RYH
DEWEY 006.6/01/516352
DatabaseName CiNii Complete
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISBN 9780080503547
0080503543
Edition 5
5th ed.
ExternalDocumentID 9780080503547
EBC318278
BA54497507
GroupedDBID -KG
-VQ
-VX
089
20A
38.
5O-
A4I
A4J
AAAAS
AABBV
AAGAK
AALRI
AAORS
AAXUO
AAYWO
AAZNM
ABARN
ABGWT
ABIAV
ABLXK
ABMAC
ABMRC
ABQPQ
ABQQC
ACHHS
ACLGV
ACNAM
ACXMD
ADCEY
ADVEM
AERYV
AFOJC
AGAMA
AHPGB
AHWGJ
AIXPE
AJFER
AKHYG
ALMA_UNASSIGNED_HOLDINGS
ALTAS
AMYDA
AVWMD
AXHOF
AZZ
BBABE
BPBUR
CETPU
CZZ
DGIFQ
DUGUG
EBSCA
ECOWB
FEDTE
GEOUK
HGY
HVGLF
INJ
IOW
JXA
MYL
NK1
NK2
OHILO
OODEK
PQQKQ
RYH
SDK
SRW
UO7
XI1
AHFFV
AADAM
AJLYV
IVK
IWL
ID FETCH-LOGICAL-a75215-76cd966c9774badfd2cda9b65b84c0ee3283d6f736d6b76f29b163e2cb06b3c83
ISBN 1558607374
9781558607378
IngestDate Thu Feb 27 10:14:46 EST 2025
Wed Dec 10 11:38:45 EST 2025
Thu Jun 26 21:44:52 EDT 2025
IsPeerReviewed false
IsScholarly false
LCCN 2001094373
LCCallNum_Ident T385.F37 2002
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-a75215-76cd966c9774badfd2cda9b65b84c0ee3283d6f736d6b76f29b163e2cb06b3c83
Notes Includes bibliographical references (p. 449-489) and index
OCLC 437191706
PQID EBC318278
PageCount 521
ParticipantIDs askewsholts_vlebooks_9780080503547
proquest_ebookcentral_EBC318278
nii_cinii_1130000796104854016
PublicationCentury 2000
PublicationDate c2002
2001
2001-11-01
PublicationDateYYYYMMDD 2002-01-01
2001-01-01
2001-11-01
PublicationDate_xml – year: 2002
  text: c2002
PublicationDecade 2000
PublicationPlace San Francisco, Calif
PublicationPlace_xml – name: San Francisco, Calif
– name: Chantilly
PublicationSeriesTitle The Morgan Kaufmann series in computer graphics and geometric
PublicationYear 2002
2001
Publisher Morgan Kaufmann
Elsevier Science & Technology
Publisher_xml – name: Morgan Kaufmann
– name: Elsevier Science & Technology
SSID ssj0000134104
Score 1.7906184
Snippet This fifth edition has been fully updated to cover the many advances made in CAGD and curve and surface theory since 1997, when the fourth edition...
This fifth edition has been fully updated to cover the many advances made in CAGD and curve and surface theory since 1997, when the fourth edition appeared....
SourceID askewsholts
proquest
nii
SourceType Aggregation Database
Publisher
SubjectTerms Computer graphics
Computer-aided design
Curves, Algebraic
Generation of geometric forms
Surfaces, Algebraic
TableOfContents 7.11 The Newton Form and Forward Differencing -- 7.12 Implementation -- 7.13 Problems -- Chapter 8. B-Spline Curves -- 8.1 Motivation -- 8.2 B-Spline Segments -- 8.3 B-Spline Curves -- 8.4 Knot Insertion -- 8.5 Degree Elevation -- 8.6 Greville Abscissae -- 8.7 Smoothness -- 8.8 B-Splines -- 8.9 B-Spline Basics -- 8.10 Implementation -- 8.11 Problems -- Chapter 9. Constructing Spline Curves -- 9.1 Greville Interpolation -- 9.2 Least Squares Approximation -- 9.3 Modifying B-Spline Curves -- 9.4 C2 Cubic Spline Interpolation -- 9.5 More End Conditions -- 9.6 Finding a Knot Sequence -- 9.7 The Minimum Property -- 9.8 C1 Piecewise Cubic Interpolation -- 9.9 Implementation -- 9.10 Problems -- Chapter 10. W. Boehm: Differential Geometry I -- 10.1 Parametric Curves and Arc Length -- 10.2 The Frenet Frame -- 10.3 Moving the Frame -- 10.4 The Osculating Circle -- 10.5 Nonparametric Curves -- 10.6 Composite Curves -- Chapter 11. Geometric Continuity -- 11.1 Motivation -- 11 2 The Direct Formulation -- 11 3 The γ, ν, and β Formulations -- 11 4 C2 Cubic Splines -- 11 5 Interpolating C2 Cubic Splines -- 11.6 Higher-Order Geometric Continuity -- 11.7 Implementation -- 11.8 Problems -- Chapter 12. Conic Sections -- 12.1 Projective Maps of the Real Line -- 12.2 Conies as Rational Quadratics -- 12.3 A de Casteljau Algorithm -- 12.4 Derivatives -- 12.5 The Implicit Form -- 12.6 Two Classic Problems -- 12.7 Classification -- 12.8 Control Vectors -- 12.9 Implementation -- 12.10 Problems -- Chapter 13. Rational Bézier and B-Spline Curves -- 13.1 Rational Bézier Curves -- 13.2 The de Casteljau Algorithm -- 13.3 Derivatives -- 13.4 Osculatory Interpolation -- 13.5 Reparametrization and Degree Elevation -- 13.6 Control Vectors -- 13.7 Rational Cubic B-Spline Curves -- 13.8 Interpolation with Rational Cubics -- 13.9 Rational B-Splines of Arbitrary Degree
19.2 The Local Frame -- 19.3 The Curvature of a Surface Curve -- 19.4 Meusnier's Theorem -- 19.5 Lines of Curvature -- 19.6 Gaussian and Mean Curvature -- 19.7 Euler's Theorem -- 19.8 Dupin's Indicatrix -- 19.9 Asymptotic Lines and Conjugate Directions -- 19.10 Ruled Surfaces and Developables -- 19.11 Nonparametric Surfaces -- 19.12 Composite Surfaces -- Chapter 20. Geometric Continuity for Surfaces -- 20.1 Introduction -- 20.2 Triangle-Triangle -- 20.3 Rectangle-Rectangle -- 20.4 Rectangle-Triangle -- 20.5 "Filling in" Rectangular Patches -- 20.6 "Filling in" Triangular Patches -- 20.7 Theoretical Aspects -- 20.8 Problems -- Chapter 21. Surfaces with Arbitrary Topology -- 21.1 Recursive Subdivision Curves -- 21.2 Doo-Sabin Surfaces -- 21.3 Catmull-Clark Subdivision -- 21.4 Midpoint Subdivision -- 21.5 Loop Subdivision -- 21.6 √3 Subdivision -- 21.7 Interpolating Subdivision Surfaces -- 21.8 Surface Splines -- 21.9 Triangular Meshes -- 21.10 Decimation -- 21.11 Problems -- Chapter 22. Coons Patches -- 22.1 Coons Patches: Bilinearly Blended -- 22.2 Coons Patches: Partially Bicubically Blended -- 22.3 Coons Patches: Bicubically Blended -- 22.4 Piecewise Coons Surfaces -- 22.5 Two Properties -- 22.6 Compatibility -- 22.7 Gordon Surfaces -- 22.8 Boolean Sums -- 22.9 Triangular Coons Patches -- 22.10 Problems -- Chapter 23. Shape -- 23.1 Use of Curvature Plots -- 23.2 Curve and Surface Smoothing -- 23.3 Surface Interrogation -- 23.4 Implementation -- 23.5 Problems -- Chapter 24. Evaluation of Some Methods -- 24.1 Bézier Curves or B-Spline Curves? -- 24.2 Spline Curves or B-Spline Curves? -- 24.3 The Monomial or the Bézier Form? -- 24.4 The B-Spline or the Hermite Form? -- 24.5 Triangular or Rectangular Patches? -- Appendix A. Quick Reference of Curve and Surface Terms -- Appendix B. List of Programs -- Appendix C. Notation -- References -- Index
Front Cover -- Curves and Surfaces for CAGD: A Practical Guide -- Copyright Page -- Contents -- Preface -- Chapter 1. P. Bézier: How a Simple System Was Born -- Chapter 2. Introductory Material -- 2.1 Points and Vectors -- 2.2 Affine Maps -- 2.3 Constructing Affine Maps -- 2.4 Function Spaces -- 2.5 Problems -- Chapter 3. Linear Interpolation -- 3.1 Linear Interpolation -- 3.2 Piecewise Linear Interpolation -- 3.3 Menelaos' Theorem -- 3.4 Blossoms -- 3.5 Barycentric Coordinates in the Plane -- 3.6 Tessellations -- 3.7 Triangulations -- 3.8 Problems -- Chapter 4. The de Casteljau Algorithm -- 4.1 Parabolas -- 4.2 The de Casteljau Algorithm -- 4.3 Some Properties of Bézier Curves -- 4.4 The Blossom -- 4.5 Implementation -- 4.6 Problems -- Chapter 5. The Bernstein Form of a Bézier Curve -- 5.1 Bernstein Polynomials -- 5.2 Properties of Bézier Curves -- 5.3 The Derivatives of a Bézier Curve -- 5.4 Domain Changes and Subdivision -- 5.5 Composite Bézier Curves -- 5.6 Blossom and Polar -- 5.7 The Matrix Form of a Beziér Curve -- 5.8 Implementation -- 5.9 Problems -- Chapter 6. Bézier Curve Topics -- 6.1 Degree Elevation -- 6.2 Repeated Degree Elevation -- 6.3 The Variation Diminishing Property -- 6.4 Degree Reduction -- 6.5 Nonparametric Curves -- 6.6 Cross Plots -- 6.7 Integrals -- 6.8 The Bézier Form of a Bézier Curve -- 6.9 The Weierstrass Approximation Theorem -- 6.10 Formulas for Bernstein Polynomials -- 6.11 Implementation -- 6.12 Problems -- Chapter 7. Polynomial Curve Constructions -- 7.1 Aitken's Algorithm -- 7.2 Lagrange Polynomials -- 7.3 The Vandermonde Approach -- 7.4 Limits of Lagrange Interpolation -- 7.5 Cubic Hermite Interpolation -- 7.6 Quintic Hermite Interpolation -- 7.7 Point-Normal Interpolation -- 7.8 Least Squares Approximation -- 7.9 Smoothing Equations -- 7.10 Designing with Bézier Curves
13.10 Implementation -- 13.11 Problems -- Chapter 14. Tensor Product Patches -- 14.1 Bilinear Interpolation -- 14.2 The Direct de Casteljau Algorithm -- 14.3 The Tensor Product Approach -- 14.4 Properties -- 14.5 Degree Elevation -- 14.6 Derivatives -- 14.7 Blossoms -- 14.8 Curves on a Surface -- 14.9 Normal Vectors -- 14.10 Twists -- 14.11 The Matrix Form of a Bézier Patch -- 14.12 Nonparametric Patches -- 14.13 Problems -- Chapter 15. Constructing Polynomial Patches -- 15.1 Ruled Surfaces -- 15.2 Coons Patches -- 15.3 Translational Surfaces -- 15.4 Tensor Product Interpolation -- 15.5 Bicubic Hermite Patches -- 15.6 Least Squares -- 15.7 Finding Parameter Values -- 15.8 Shape Equations -- 15.9 A Problem with Unstructured Data -- 15.10 Implementation -- 15.11 Problems -- Chapter 16. Composite Surfaces -- 16.1 Smoothness and Subdivision -- 16.2 Tensor Product B-Spline Surfaces -- 16.3 Twist Estimation -- 16.4 Bicubic Spline Interpolation -- 16.5 Finding Knot Sequences -- 16.6 Rational Bézier and B-Spline Surfaces -- 16.7 Surfaces of Revolution -- 16.8 Volume Deformations -- 16.9 CONS and Trimmed Surfaces -- 16.10 Implementation -- 16.11 Problems -- Chapter 17. Bézier Triangles -- 17.1 The de Casteljau Algorithm -- 17.2 Triangular Blossoms -- 17.3 Bernstein Polynomials -- 17.4 Derivatives -- 17.5 Subdivision -- 17.6 Differentiability -- 17.7 Degree Elevation -- 17.8 Nonparametric Patches -- 17.9 The Multivariate Case -- 17.10 S-Patches -- 17.11 Implementation -- 17.12 Problems -- Chapter 18. Practical Aspects of Bézier Triangles -- 18.1 Rational Bézier Triangles -- 18.2 Quadrics -- 18.3 Interpolation -- 18.4 Cubic and Quintic Interpolants -- 18.5 The Clough-Tocher Interpolant -- 18.6 The Powell-Sabin Interpolant -- 18.7 Least Squares -- 18.8 Problems -- Chapter 19. W. Boehm: Differential Geometry II -- 19.1 Parametric Surfaces and Arc Element
Color Plate Section
Title Curves and surfaces for CAGD : a practical guide
URI https://cir.nii.ac.jp/crid/1130000796104854016
https://ebookcentral.proquest.com/lib/[SITE_ID]/detail.action?docID=318278
https://www.vlebooks.com/vleweb/product/openreader?id=none&isbn=9780080503547&uid=none
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELbowoE98RQLtFiIWxXkjR074dZut0UqFA4F9Rb5EaOI1qDNbtWfz2dvGtrlgDhwsRJLGSnfJJ7P43kQ8sZOvYaV5JnXXGQCnCMzxrKMce-crirBdaoz-0GdnJRnZ9XnPpC0S-0EVAjl1VX187-qGnNQdkyd_Qd1D0IxgWsoHSPUjnGDEQ-3QwHRWEI2ecJXC59irWIQ4Wzv6GB3ndTc50RBLd9WrRt0eogNc1h7yJOHav72ljMg33AGfEytoHaP9cpf6BBu7RVBHEqJH3rdMWejyPT-XiFEBfagtsiWktjF3j2af_pyPLirWCz8xmKTrEGO6CtmDXLHZKy771ibsW4vOxjr0LZ_mLhkt08fkFHM5XhI7jThERnfqL34mLA1XBRw0Wu4KOCiES76jmo6gEUTWE_I18P56ex91rePyLQCKSkyJa3Dbs5Gimu08y63-PyMLEwpLGsaDmrlpFdcOmmU9HllwE6b3BomDbclf0pG4UdonhFqwSpZ6QpfSVAwkRujlBWeNUUjtS38hLy-8er15Xk66u7qWN8JnLxgvBBqQraBSG3bOE7jOSIIWgX-Kkrw5qmckFfXWNXp-T4-t57vz7D05qp8_hcJL8j931_FSzJaLlbNNrlnL5dtt9jpdfoLQfgSQg
linkProvider ProQuest Ebooks
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.title=Curves+and+surfaces+for+CAGD+%3A+a+practical+guide&rft.au=Farin%2C+Gerald+E.&rft.date=2002-01-01&rft.pub=Morgan+Kaufmann&rft.isbn=9781558607378&rft.externalDocID=BA54497507
thumbnail_m http://cvtisr.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fvle.dmmserver.com%2Fmedia%2F640%2F97800805%2F9780080503547.jpg