Principal manifolds for data visualization and dimension reduction

The book starts with the quote of the classical Pearson definition of PCA and includes reviews of various methods: NLPCA, ICA, MDS, embedding and clustering algorithms, principal manifolds and SOM. New approaches to NLPCA, principal manifolds, branching principal components and topology preserving m...

Celý popis

Uloženo v:
Podrobná bibliografie
Hlavní autoři: Gorban, Alexander N., Kégl, Balázs, Wunsch, Donald C., Zinovyev, Andrei
Médium: E-kniha Kniha
Jazyk:angličtina
Vydáno: Berlin, Heidelberg Springer 2008
Springer Berlin / Heidelberg
Springer Berlin Heidelberg
Vydání:1
Edice:Lecture Notes in Computational Science and Enginee
Témata:
ISBN:3540737499, 9783540737490
ISSN:1439-7358
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:The book starts with the quote of the classical Pearson definition of PCA and includes reviews of various methods: NLPCA, ICA, MDS, embedding and clustering algorithms, principal manifolds and SOM. New approaches to NLPCA, principal manifolds, branching principal components and topology preserving mappings are described. Presentation of algorithms is supplemented by case studies. The volume ends with a tutorial PCA deciphers genome.
Bibliografie:Includes bibliographical references and index
Other editors: Balázs Kégl, Donald C. Wunsch, Andrei Zinovyev
SourceType-Books-1
ObjectType-Book-1
content type line 7
ISBN:3540737499
9783540737490
ISSN:1439-7358
DOI:10.1007/978-3-540-73750-6