Principal manifolds for data visualization and dimension reduction

The book starts with the quote of the classical Pearson definition of PCA and includes reviews of various methods: NLPCA, ICA, MDS, embedding and clustering algorithms, principal manifolds and SOM. New approaches to NLPCA, principal manifolds, branching principal components and topology preserving m...

Celý popis

Uložené v:
Podrobná bibliografia
Hlavní autori: Gorban, Alexander N., Kégl, Balázs, Wunsch, Donald C., Zinovyev, Andrei
Médium: E-kniha Kniha
Jazyk:English
Vydavateľské údaje: Berlin, Heidelberg Springer 2008
Springer Berlin / Heidelberg
Springer Berlin Heidelberg
Vydanie:1
Edícia:Lecture Notes in Computational Science and Enginee
Predmet:
ISBN:3540737499, 9783540737490
ISSN:1439-7358
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:The book starts with the quote of the classical Pearson definition of PCA and includes reviews of various methods: NLPCA, ICA, MDS, embedding and clustering algorithms, principal manifolds and SOM. New approaches to NLPCA, principal manifolds, branching principal components and topology preserving mappings are described. Presentation of algorithms is supplemented by case studies. The volume ends with a tutorial PCA deciphers genome.
Bibliografia:Includes bibliographical references and index
Other editors: Balázs Kégl, Donald C. Wunsch, Andrei Zinovyev
SourceType-Books-1
ObjectType-Book-1
content type line 7
ISBN:3540737499
9783540737490
ISSN:1439-7358
DOI:10.1007/978-3-540-73750-6