Principal manifolds for data visualization and dimension reduction
The book starts with the quote of the classical Pearson definition of PCA and includes reviews of various methods: NLPCA, ICA, MDS, embedding and clustering algorithms, principal manifolds and SOM. New approaches to NLPCA, principal manifolds, branching principal components and topology preserving m...
Uložené v:
| Hlavní autori: | , , , |
|---|---|
| Médium: | E-kniha Kniha |
| Jazyk: | English |
| Vydavateľské údaje: |
Berlin, Heidelberg
Springer
2008
Springer Berlin / Heidelberg Springer Berlin Heidelberg |
| Vydanie: | 1 |
| Edícia: | Lecture Notes in Computational Science and Enginee |
| Predmet: | |
| ISBN: | 3540737499, 9783540737490 |
| ISSN: | 1439-7358 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Shrnutí: | The book starts with the quote of the classical Pearson definition of PCA and includes reviews of various methods: NLPCA, ICA, MDS, embedding and clustering algorithms, principal manifolds and SOM. New approaches to NLPCA, principal manifolds, branching principal components and topology preserving mappings are described. Presentation of algorithms is supplemented by case studies. The volume ends with a tutorial PCA deciphers genome. |
|---|---|
| Bibliografia: | Includes bibliographical references and index Other editors: Balázs Kégl, Donald C. Wunsch, Andrei Zinovyev SourceType-Books-1 ObjectType-Book-1 content type line 7 |
| ISBN: | 3540737499 9783540737490 |
| ISSN: | 1439-7358 |
| DOI: | 10.1007/978-3-540-73750-6 |

