Visual Tracking Based on an Improved Online Multiple Instance Learning Algorithm

An improved online multiple instance learning (IMIL) for a visual tracking algorithm is proposed. In the IMIL algorithm, the importance of each instance contributing to a bag probability is with respect to their probabilities. A selection strategy based on an inner product is presented to choose wea...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Computational Intelligence and Neuroscience Ročník 2016; číslo 2016; s. 637 - 645-054
Hlavní autoři: Wang, Li Jia, Zhang, Hua
Médium: Journal Article
Jazyk:angličtina
Vydáno: Cairo, Egypt Hindawi Limiteds 01.01.2016
Hindawi Publishing Corporation
John Wiley & Sons, Inc
Témata:
ISSN:1687-5265, 1687-5273
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:An improved online multiple instance learning (IMIL) for a visual tracking algorithm is proposed. In the IMIL algorithm, the importance of each instance contributing to a bag probability is with respect to their probabilities. A selection strategy based on an inner product is presented to choose weak classifier from a classifier pool, which avoids computing instance probabilities and bag probability M times. Furthermore, a feedback strategy is presented to update weak classifiers. In the feedback update strategy, different weights are assigned to the tracking result and template according to the maximum classifier score. Finally, the presented algorithm is compared with other state-of-the-art algorithms. The experimental results demonstrate that the proposed tracking algorithm runs in real-time and is robust to occlusion and appearance changes.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Academic Editor: Manuel Graña
ISSN:1687-5265
1687-5273
DOI:10.1155/2016/3472184