Food process engineering and technology
The past 30 years have seen the establishment of food engineering both as an academic discipline and as a profession. Combining scientific depth with practical usefulness, this book serves as a tool for graduate students as well as practicing food engineers, technologists and researchers looking for...
Uložené v:
| Hlavný autor: | |
|---|---|
| Médium: | E-kniha Kniha |
| Jazyk: | English |
| Vydavateľské údaje: |
Amsterdam
Academic
2009
Boston Elsevier Elsevier/Academic Press Elsevier Science & Technology |
| Vydanie: | 1 |
| Predmet: | |
| ISBN: | 0123736609, 9780123736604 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
Obsah:
- Title Page Table of Contents Introduction - 'Food is Life' 1. Physical Properties of Food Materials 2. Fluid Flow 3. Heat and Mass Transfer, Basic Principles 4. Reaction Kinetics 5. Elements of Process Control 6. Size Reduction 7. Mixing 8. Filtration 9. Centrifugation 10. Membrane Processes 11. Extraction 12. Adsorption and Ion Exchange 13. Distillation 14. Crystallization and Dissolution 15. Extrusion 16. Spoilage and Preservation of Foods 17. Thermal Processing 18. Thermal Processes, Methods and Equipment 19. Refrigeration, Chilling and Freezing 20. Refrigeration, Equipment and Methods 21. Evaporation 22. Dehydration 23. Freeze Drying (Lyophilization) and Freeze Concentration 24. Frying, Baking, Roasting 25. Ionizing Irradiation and other Non-Thermal Preservation Processes 26. Food Packaging 27. Cleaning, Disinfection, Sanitation Appendix Index Series List
- Front Cover -- Food Process Engineering and Technology -- Copyright Page -- Contents -- Introduction - Food is Life -- Chapter 1 Physical properties of food materials -- 1.1 Introduction -- 1.2 Mechanical properties -- 1.2.1 Definitions -- 1.2.2 Rheological models -- 1.3 Thermal properties -- 1.4 Electrical properties -- 1.5 Structure -- 1.6 Water activity -- 1.6.1 The importance of water in foods -- 1.6.2 Water activity, definition and determination -- 1.6.3 Water activity: prediction -- 1.6.4 Water vapor sorption isotherms -- 1.6.5 Water activity: effect on food quality and stability -- 1.7 Phase transition phenomena in foods -- 1.7.1 The glassy state in foods -- 1.7.2 Glass transition temperature -- Chapter 2 Fluid flow -- 2.1 Introduction -- 2.2 Elements of fluid dynamics -- 2.2.1 Viscosity -- 2.2.2 Fluid flow regimes -- 2.2.3 Typical applications of Newtonian laminar flow -- 2.2.3a Laminar flow in a cylindrical channel (pipe or tube) -- 2.2.3b Laminar fluid flow on flat surfaces and channels -- 2.2.3c Laminar fluid flow around immersed particles -- 2.2.3d Fluid flow through porous media -- 2.2.4 Turbulent fluid flow -- 2.2.4a Turbulent Newtonian fluid flow in a cylindrical channel (tube or pipe) -- 2.2.4b Turbulent fluid flow around immersed particles -- 2.3 Flow properties of fluids -- 2.3.1 Types of fluid flow behavior -- 2.3.2 Non-Newtonian fluid flow in pipes -- 2.4 Transportation of fluids -- 2.4.1 Energy relations, the Bernoulli Equation -- 2.4.2 Pumps: Types and operation -- 2.4.3 Pump selection -- 2.4.4 Ejectors -- 2.4.5 Piping -- 2.5 Flow of particulate solids (powder flow) -- 2.5.1 Introduction -- 2.5.2 Flow properties of particulate solids -- 2.5.3 Fluidization -- 2.5.4 Pneumatic transport -- Chapter 3 Heat and mass transfer, basic principles -- 3.1 Introduction -- 3.2 Basic relations in transport phenomena
- 11.3 Supercritical fluid extraction -- 11.3.1 Basic principles -- 11.3.2 Supercritical fluids as solvents -- 11.3.3 Supercritical extraction systems -- 11.3.4 Applications -- 11.4 Liquid-liquid extraction -- 11.4.1 Principles -- 11.4.2 Applications -- Chapter 12 Adsorption and ion exchange -- 12.1 Introduction -- 12.2 Equilibrium conditions -- 12.3 Batch adsorption -- 12.4 Adsorption in columns -- 12.5 Ion exchange -- 12.5.1 Basic principles -- 12.5.2 Properties of ion exchangers -- 12.5.3 Application: Water softening using ion exchange -- 12.5.4 Application: Reduction of acidity in fruit juices -- Chapter 13 Distillation -- 13.1 Introduction -- 13.2 Vapor-liquid equilibrium (VLE) -- 13.3 Continuous flash distillation -- 13.4 Batch (differential) distillation -- 13.5 Fractional distillation -- 13.5.1 Basic concepts -- 13.5.2 Analysis and design of the column -- 13.5.3 Effect of the reflux ratio -- 13.5.4 Tray configuration -- 13.5.5 Column configuration -- 13.5.6 Heating with live steam -- 13.5.7 Energy considerations -- 13.6 Steam distillation -- 13.7 Distillation of wines and spirits -- Chapter 14 Crystallization and dissolution -- 14.1 Introduction -- 14.2 Crystallization kinetics -- 14.2.1 Nucleation -- 14.2.2 Crystal growth -- 14.3 Crystallization in the food industry -- 14.3.1 Equipment -- 14.3.2 Processes -- 14.4 Dissolution -- 14.4.1 Introduction -- 14.4.2 Mechanism and kinetics -- Chapter 15 Extrusion -- 15.1 Introduction -- 15.2 The single-screw extruder -- 15.2.1 Structure -- 15.2.2 Operation -- 15.2.3 Flow models, extruder throughput -- 15.2.4 Residence time distribution -- 15.3 Twin-screw extruders -- 15.3.1 Structure -- 15.3.2 Operation -- 15.3.3 Advantages and shortcomings -- 15.4 Effect on foods -- 15.4.1 Physical effects -- 15.4.2 Chemical effect -- 15.5 Food applications of extrusion -- 15.5.1 Forming extrusion of pasta
- 3.2.1 Basic laws of transport -- 3.2.2 Mechanisms of heat and mass transfer -- 3.3 Conductive heat and mass transfer -- 3.3.1 The Fourier and Fick laws -- 3.3.2 Integration of Fourier's and Fick's laws for steady-state conductive transport -- 3.3.3 Thermal conductivity, thermal diffusivity and molecular diffusivity -- 3.3.4 Examples of steady-state conductive heat and mass transfer processes -- 3.4 Convective heat and mass transfer -- 3.4.1 Film (or surface) heat and mass transfer coefficients -- 3.4.2 Empirical correlations for convection heat and mass transfer -- 3.4.3 Steady-state interphase mass transfer -- 3.5 Unsteady state heat and mass transfer -- 3.5.1 The 2nd Fourier and Fick laws -- 3.5.2 Solution of Fourier's second law equation for an infinite slab -- 3.5.3 Transient conduction transfer in finite solids -- 3.5.4 Transient convective transfer in a semi-infinite body -- 3.5.5 Unsteady state convective transfer -- 3.6 Heat transfer by radiation -- 3.6.1 Interaction between matter and thermal radiation -- 3.6.2 Radiation heat exchange between surfaces -- 3.6.3 Radiation combined with convection -- 3.7 Heat exchangers -- 3.7.1 Overall coefficient of heat transfer -- 3.7.2 Heat exchange between flowing fluids -- 3.7.3 Fouling -- 3.7.4 Heat exchangers in the food process industry -- 3.8 Microwave heating -- 3.8.1 Basic principles of microwave heating -- 3.9 Ohmic heating -- 3.9.1 Introduction -- 3.9.2 Basic principles -- 3.9.3 Applications and equipment -- Chapter 4 Reaction kinetics -- 4.1 Introduction -- 4.2 Basic concepts -- 4.2.1 Elementary and non-elementary reactions -- 4.2.2 Reaction order -- 4.2.3 Effect of temperature on reaction kinetics -- 4.3 Kinetics of biological processes -- 4.3.1 Enzyme-catalyzed reactions -- 4.3.2 Growth of microorganisms -- 4.4 Residence time and residence time distribution -- 4.4.1 Reactors in food processing
- 7.6.1 Basic principles -- 7.6.2 Homogenizers -- Chapter 8 Filtration -- 8.1 Introduction -- 8.2 Depth filtration -- 8.3 Surface (barrier) filtration -- 8.3.1 Mechanisms -- 8.3.2 Rate of filtration -- 8.3.3 Optimization of the filtration cycle -- 8.3.4 Characteristics of filtration cakes -- 8.3.5 The role of cakes in filtration -- 8.4 Filtration equipment -- 8.4.1 Depth filters -- 8.4.2 Barrier (surface) filters -- 8.5 Expression -- 8.5.1 Introduction -- 8.5.2 Mechanisms -- 8.5.3 Applications and equipment -- Chapter 9 Centrifugation -- 9.1 Introduction -- 9.2 Basic principles -- 9.2.1 The continuous settling tank -- 9.2.2 From the settling tank to the tubular centrifuge -- 9.2.3 The baffled settling tank and the disc-bowl centrifuge -- 9.2.4 Liquid-liquid separation -- 9.3 Centrifuges -- 9.3.1 Tubular centrifuges -- 9.3.2 Disc-bowl centrifuges -- 9.3.3 Decanter centrifuges -- 9.3.4 Basket centrifuges -- 9.4 Cyclones -- Chapter 10 Membrane processes -- 10.1 Introduction -- 10.2 Tangential filtration -- 10.3 Mass transfer through MF and UF membranes -- 10.3.1 Solvent transport -- 10.3.2 Solute transport -- sieving coefficient and rejection -- 10.3.3 Concentration polarization and gel polarization -- 10.4 Mass transfer in reverse osmosis -- 10.4.1 Basic concepts -- 10.4.2 Solvent transport in reverse osmosis -- 10.5 Membrane systems -- 10.5.1 Membrane materials -- 10.5.2 Membrane configurations -- 10.6 Membrane processes in the food industry -- 10.6.1 Microfiltration -- 10.6.2 Ultrafiltration -- 10.6.3 Nanofiltration and reverse osmosis -- 10.7 Electrodialysis -- Chapter 11 Extraction -- 11.1 Introduction -- 11.2 Solid-liquid extraction (leaching) -- 11.2.1 Definitions -- 11.2.2 Material balance -- 11.2.3 Equilibrium -- 11.2.4 Multistage extraction -- 11.2.5 Stage efficiency -- 11.2.6 Solid-liquid extraction systems
- 4.4.2 Residence time distribution -- Chapter 5 Elements of process control -- 5.1 Introduction -- 5.2 Basic concepts -- 5.3 Basic control structures -- 5.3.1 Feedback control -- 5.3.2 Feed-forward control -- 5.3.3 Comparative merits of control strategies -- 5.4 The block diagram -- 5.5 Input, output and process dynamics -- 5.5.1 First order response -- 5.5.2 Second order systems -- 5.6 Control modes (control algorithms) -- 5.6.1 On-off (binary) control -- 5.6.2 Proportional (P) control -- 5.6.3 Integral (I) control -- 5.6.4 Proportional-integral (PI) control -- 5.6.5 Proportional-integral-differential (PID) control -- 5.6.6 Optimization of control -- 5.7 The physical elements of the control system -- 5.7.1 The sensors (measuring elements) -- 5.7.2 The controllers -- 5.7.3 The actuators -- Chapter 6 Size reduction -- 6.1 Introduction -- 6.2 Particle size and particle size distribution -- 6.2.1 Defining the size of a single particle -- 6.2.2 Particle size distribution in a population of particles -- defining a 'mean particle size' -- 6.2.3 Mathematical models of PSD -- 6.2.4 A note on particle shape -- 6.3 Size reduction of solids, basic principles -- 6.3.1 Mechanism of size reduction in solids -- 6.3.2 Particle size distribution after size reduction -- 6.3.3 Energy consumption -- 6.4 Size reduction of solids, equipment and methods -- 6.4.1 Impact mills -- 6.4.2 Pressure mills -- 6.4.3 Attrition mills -- 6.4.4 Cutters and choppers -- Chapter 7 Mixing -- 7.1 Introduction -- 7.2 Mixing of fluids (blending) -- 7.2.1 Types of blenders -- 7.2.2 Flow patterns in fluid mixing -- 7.2.3 Energy input in fluid mixing -- 7.3 Kneading -- 7.4 In-flow mixing -- 7.5 Mixing of particulate solids -- 7.5.1 Mixing and segregation -- 7.5.2 Quality of mixing, the concept of 'mixedness' -- 7.5.3 Equipment for mixing particulate solids -- 7.6 Homogenization
- 15.5.2 Expanded snacks

