A hybrid neural networks-fuzzy logic-genetic algorithm for grade estimation
The grade estimation is a quite important and money/time-consuming stage in a mine project, which is considered as a challenge for the geologists and mining engineers due to the structural complexities in mineral ore deposits. To overcome this problem, several artificial intelligence techniques such...
Uloženo v:
| Vydáno v: | Computers & geosciences Ročník 42; s. 18 - 27 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
United States
Elsevier Ltd
01.05.2012
Pergamon Press |
| Témata: | |
| ISSN: | 0098-3004, 1873-7803 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | The grade estimation is a quite important and money/time-consuming stage in a mine project, which is considered as a challenge for the geologists and mining engineers due to the structural complexities in mineral ore deposits. To overcome this problem, several artificial intelligence techniques such as Artificial Neural Networks (ANN) and Fuzzy Logic (FL) have recently been employed with various architectures and properties. However, due to the constraints of both methods, they yield the desired results only under the specific circumstances. As an example, one major problem in FL is the difficulty of constructing the membership functions (MFs).Other problems such as architecture and local minima could also be located in ANN designing. Therefore, a new methodology is presented in this paper for grade estimation. This method which is based on ANN and FL is called “Coactive Neuro-Fuzzy Inference System” (CANFIS) which combines two approaches, ANN and FL. The combination of these two artificial intelligence approaches is achieved via the verbal and numerical power of intelligent systems. To improve the performance of this system, a Genetic Algorithm (GA) – as a well-known technique to solve the complex optimization problems – is also employed to optimize the network parameters including learning rate, momentum of the network and the number of MFs for each input. A comparison of these techniques (ANN, Adaptive Neuro-Fuzzy Inference System or ANFIS) with this new method (CANFIS–GA) is also carried out through a case study in Sungun copper deposit, located in East-Azerbaijan, Iran. The results show that CANFIS–GA could be a faster and more accurate alternative to the existing time-consuming methodologies for ore grade estimation and that is, therefore, suggested to be applied for grade estimation in similar problems.
[Display omitted]
► We developed and applied a hybrid neural network for grade estimation. ► The new method is composed of ANN, FL and GA. ► This method removes the limitation of hybrid neural-fuzzy networks. ► The proposed hybrid network has less user-dependent parameters. |
|---|---|
| AbstractList | The grade estimation is a quite important and money/time-consuming stage in a mine project, which is considered as a challenge for the geologists and mining engineers due to the structural complexities in mineral ore deposits. To overcome this problem, several artificial intelligence techniques such as Artificial Neural Networks (ANN) and Fuzzy Logic (FL) have recently been employed with various architectures and properties. However, due to the constraints of both methods, they yield the desired results only under the specific circumstances. As an example, one major problem in FL is the difficulty of constructing the membership functions (MFs).Other problems such as architecture and local minima could also be located in ANN designing. Therefore, a new methodology is presented in this paper for grade estimation. This method which is based on ANN and FL is called "Coactive Neuro-Fuzzy Inference System" (CANFIS) which combines two approaches, ANN and FL. The combination of these two artificial intelligence approaches is achieved via the verbal and numerical power of intelligent systems. To improve the performance of this system, a Genetic Algorithm (GA) - as a well-known technique to solve the complex optimization problems - is also employed to optimize the network parameters including learning rate, momentum of the network and the number of MFs for each input. A comparison of these techniques (ANN, Adaptive Neuro-Fuzzy Inference System or ANFIS) with this new method (CANFIS-GA) is also carried out through a case study in Sungun copper deposit, located in East-Azerbaijan, Iran. The results show that CANFIS-GA could be a faster and more accurate alternative to the existing time-consuming methodologies for ore grade estimation and that is, therefore, suggested to be applied for grade estimation in similar problems. The grade estimation is a quite important and money/time-consuming stage in a mine project, which is considered as a challenge for the geologists and mining engineers due to the structural complexities in mineral ore deposits. To overcome this problem, several artificial intelligence techniques such as Artificial Neural Networks (ANN) and Fuzzy Logic (FL) have recently been employed with various architectures and properties. However, due to the constraints of both methods, they yield the desired results only under the specific circumstances. As an example, one major problem in FL is the difficulty of constructing the membership functions (MFs).Other problems such as architecture and local minima could also be located in ANN designing. Therefore, a new methodology is presented in this paper for grade estimation. This method which is based on ANN and FL is called “Coactive Neuro-Fuzzy Inference System” (CANFIS) which combines two approaches, ANN and FL. The combination of these two artificial intelligence approaches is achieved via the verbal and numerical power of intelligent systems. To improve the performance of this system, a Genetic Algorithm (GA) – as a well-known technique to solve the complex optimization problems – is also employed to optimize the network parameters including learning rate, momentum of the network and the number of MFs for each input. A comparison of these techniques (ANN, Adaptive Neuro-Fuzzy Inference System or ANFIS) with this new method (CANFIS–GA) is also carried out through a case study in Sungun copper deposit, located in East-Azerbaijan, Iran. The results show that CANFIS–GA could be a faster and more accurate alternative to the existing time-consuming methodologies for ore grade estimation and that is, therefore, suggested to be applied for grade estimation in similar problems. [Display omitted] ► We developed and applied a hybrid neural network for grade estimation. ► The new method is composed of ANN, FL and GA. ► This method removes the limitation of hybrid neural-fuzzy networks. ► The proposed hybrid network has less user-dependent parameters. The grade estimation is a quite important and money/time-consuming stage in a mine project, which is considered as a challenge for the geologists and mining engineers due to the structural complexities in mineral ore deposits. To overcome this problem, several artificial intelligence techniques such as Artificial Neural Networks (ANN) and Fuzzy Logic (FL) have recently been employed with various architectures and properties. However, due to the constraints of both methods, they yield the desired results only under the specific circumstances. As an example, one major problem in FL is the difficulty of constructing the membership functions (MFs).Other problems such as architecture and local minima could also be located in ANN designing. Therefore, a new methodology is presented in this paper for grade estimation. This method which is based on ANN and FL is called "Coactive Neuro-Fuzzy Inference System" (CANFIS) which combines two approaches, ANN and FL. The combination of these two artificial intelligence approaches is achieved via the verbal and numerical power of intelligent systems. To improve the performance of this system, a Genetic Algorithm (GA) - as a well-known technique to solve the complex optimization problems - is also employed to optimize the network parameters including learning rate, momentum of the network and the number of MFs for each input. A comparison of these techniques (ANN, Adaptive Neuro-Fuzzy Inference System or ANFIS) with this new method (CANFIS-GA) is also carried out through a case study in Sungun copper deposit, located in East-Azerbaijan, Iran. The results show that CANFIS-GA could be a faster and more accurate alternative to the existing time-consuming methodologies for ore grade estimation and that is, therefore, suggested to be applied for grade estimation in similar problems.The grade estimation is a quite important and money/time-consuming stage in a mine project, which is considered as a challenge for the geologists and mining engineers due to the structural complexities in mineral ore deposits. To overcome this problem, several artificial intelligence techniques such as Artificial Neural Networks (ANN) and Fuzzy Logic (FL) have recently been employed with various architectures and properties. However, due to the constraints of both methods, they yield the desired results only under the specific circumstances. As an example, one major problem in FL is the difficulty of constructing the membership functions (MFs).Other problems such as architecture and local minima could also be located in ANN designing. Therefore, a new methodology is presented in this paper for grade estimation. This method which is based on ANN and FL is called "Coactive Neuro-Fuzzy Inference System" (CANFIS) which combines two approaches, ANN and FL. The combination of these two artificial intelligence approaches is achieved via the verbal and numerical power of intelligent systems. To improve the performance of this system, a Genetic Algorithm (GA) - as a well-known technique to solve the complex optimization problems - is also employed to optimize the network parameters including learning rate, momentum of the network and the number of MFs for each input. A comparison of these techniques (ANN, Adaptive Neuro-Fuzzy Inference System or ANFIS) with this new method (CANFIS-GA) is also carried out through a case study in Sungun copper deposit, located in East-Azerbaijan, Iran. The results show that CANFIS-GA could be a faster and more accurate alternative to the existing time-consuming methodologies for ore grade estimation and that is, therefore, suggested to be applied for grade estimation in similar problems. |
| Author | Hezarkhani, Ardeshir Tahmasebi, Pejman |
| AuthorAffiliation | Department of Mining, Metallurgy and Petroleum Engineering, Amirkabir University of Technology (Tehran Polytechnic), Hafez Ave. No. 24, Hafez ave., Tehran, Iran |
| AuthorAffiliation_xml | – name: Department of Mining, Metallurgy and Petroleum Engineering, Amirkabir University of Technology (Tehran Polytechnic), Hafez Ave. No. 24, Hafez ave., Tehran, Iran |
| Author_xml | – sequence: 1 givenname: Pejman surname: Tahmasebi fullname: Tahmasebi, Pejman email: pejman@aut.ac.ir – sequence: 2 givenname: Ardeshir surname: Hezarkhani fullname: Hezarkhani, Ardeshir email: Ardehez@aut.ac.ir |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/25540468$$D View this record in MEDLINE/PubMed |
| BookMark | eNqFkU1vEzEQhq2qqE0DvwAJ9shlw9hefx1Aqiq-RCUOtGfL8dobh8262LtF6a_HadoKOBBppJHGz4zfmfcMHQ9xcAi9xLDAgPnb9cKazsUFAUwWUAKaIzTDUtBaSKDHaAagZE1L_RSd5bwGAEIkO0GnhLEGGi5n6Ot5tdouU2irwU3J9CWNv2L6kWs_3d1tqz52wdadK-VgK9N3MYVxtal8TFWXTOsql8ewMWOIw3P0zJs-uxcPeY6uP364uvhcX3779OXi_LI2nMqxbi0Y4ZVTbMlazzwRjFCDmVTUK9ESMBQTy70VREnrjXCWW4O9stgQaBo6R-_3c2-m5ca11g1jUa5vUtGRtjqaoP9-GcJKd_FWN4RLJmUZ8OZhQIo_p7KA3oRsXd-bwcUpa1IuBYJSOIxiyRRXRWlzGOUNIYKrsuccvfpzgyfpj74UgO4Bm2LOyfknBIPeua_X-t59vXNfQwnYKVD_dNkw3ltTzhD6A72v973eRG26FLK-_l4AXk7BqaA7Te_2hCve3gaXdLbBDda1ITk76jaG__7wG4d_1Xc |
| CitedBy_id | crossref_primary_10_1080_19942060_2018_1448896 crossref_primary_10_1007_s11004_015_9597_7 crossref_primary_10_1016_j_envres_2015_11_024 crossref_primary_10_1016_j_enbuild_2016_07_054 crossref_primary_10_1007_s42452_021_04899_5 crossref_primary_10_1007_s00521_020_05553_8 crossref_primary_10_3390_min10100847 crossref_primary_10_1007_s10230_013_0247_3 crossref_primary_10_1016_j_apgeochem_2020_104679 crossref_primary_10_3390_min12101296 crossref_primary_10_3390_s20061669 crossref_primary_10_1007_s00170_019_03354_5 crossref_primary_10_1016_j_surg_2020_08_038 crossref_primary_10_1007_s40200_021_00843_x crossref_primary_10_1515_epoly_2016_0235 crossref_primary_10_1016_j_physrep_2021_09_003 crossref_primary_10_1016_j_scitotenv_2023_169113 crossref_primary_10_1007_s12145_021_00667_6 crossref_primary_10_1007_s13369_017_2589_9 crossref_primary_10_1515_acss_2017_0014 crossref_primary_10_1016_j_agrformet_2018_12_015 crossref_primary_10_1088_1755_1315_212_1_012067 crossref_primary_10_1007_s12517_020_05644_9 crossref_primary_10_1080_08839514_2021_1922847 crossref_primary_10_3390_en16237773 crossref_primary_10_3390_pr10071378 crossref_primary_10_1371_journal_pone_0323913 crossref_primary_10_1016_j_scitotenv_2019_134656 crossref_primary_10_3390_app13137622 crossref_primary_10_1007_s00170_017_0151_2 crossref_primary_10_1016_j_jafrearsci_2022_104662 crossref_primary_10_3390_min11101059 crossref_primary_10_1007_s00500_023_09551_5 crossref_primary_10_1007_s11004_021_09967_5 crossref_primary_10_1520_SSMS20180031 crossref_primary_10_1016_j_ijmst_2017_03_004 crossref_primary_10_1080_17442508_2022_2070019 crossref_primary_10_1007_s00521_019_04101_3 crossref_primary_10_1007_s12517_021_06833_w crossref_primary_10_1016_j_earscirev_2024_104941 crossref_primary_10_2166_wcc_2024_143 crossref_primary_10_1007_s11600_022_00948_8 crossref_primary_10_1007_s13369_021_06487_6 crossref_primary_10_3390_en12163067 crossref_primary_10_1088_1755_1315_421_4_042015 crossref_primary_10_1016_j_geoen_2023_212387 crossref_primary_10_1007_s00366_018_00694_w crossref_primary_10_3389_fenvs_2021_748913 crossref_primary_10_3390_app9194159 crossref_primary_10_1088_1742_6596_1601_3_032056 crossref_primary_10_3390_su11030818 crossref_primary_10_1016_j_petrol_2020_107291 crossref_primary_10_1155_2022_2055655 crossref_primary_10_1177_25726668241281875 crossref_primary_10_1088_1757_899X_734_1_012124 crossref_primary_10_1016_j_jenvman_2019_06_102 crossref_primary_10_1007_s12517_020_05607_0 crossref_primary_10_1007_s12559_021_09859_0 crossref_primary_10_1061__ASCE_CO_1943_7862_0002250 crossref_primary_10_1109_JIOT_2025_3583582 crossref_primary_10_1016_j_dt_2017_01_001 crossref_primary_10_1108_IJICC_06_2016_0021 crossref_primary_10_3390_met13030490 crossref_primary_10_1016_j_jappgeo_2022_104574 crossref_primary_10_1007_s11694_024_02487_w crossref_primary_10_2118_204224_PA crossref_primary_10_1016_j_chemer_2021_125824 crossref_primary_10_1016_j_physa_2016_08_031 crossref_primary_10_1007_s00521_018_3344_1 crossref_primary_10_1007_s12517_016_2384_z crossref_primary_10_1155_2020_8851065 crossref_primary_10_1016_j_petlm_2022_03_003 crossref_primary_10_1016_j_gexplo_2016_02_001 crossref_primary_10_1016_j_jclepro_2017_10_303 crossref_primary_10_1016_j_cageo_2019_05_005 crossref_primary_10_3390_min13070982 crossref_primary_10_1080_19475705_2017_1327464 crossref_primary_10_1016_j_epsr_2022_107867 crossref_primary_10_1007_s11771_017_3616_4 crossref_primary_10_1051_matecconf_201815401077 crossref_primary_10_1016_j_petlm_2017_09_009 crossref_primary_10_3390_en14144079 crossref_primary_10_3390_rs15010042 crossref_primary_10_1007_s10586_018_2279_8 crossref_primary_10_3389_fnins_2022_867664 crossref_primary_10_3390_su15097087 crossref_primary_10_1016_j_petrol_2021_109029 crossref_primary_10_1016_j_mineng_2015_09_020 crossref_primary_10_1016_j_geogeo_2022_100038 crossref_primary_10_1007_s00521_017_2850_x crossref_primary_10_3390_ma14216373 crossref_primary_10_1016_j_oceaneng_2021_108861 crossref_primary_10_1038_s41598_025_96371_2 crossref_primary_10_1371_journal_pone_0272790 crossref_primary_10_1016_j_jss_2017_07_017 crossref_primary_10_3103_S1060992X21030085 crossref_primary_10_1007_s11069_018_3449_y crossref_primary_10_1007_s00521_020_05194_x crossref_primary_10_1002_joc_8792 crossref_primary_10_1007_s12517_017_2868_5 crossref_primary_10_1007_s00500_020_05487_2 crossref_primary_10_1007_s13201_016_0508_y crossref_primary_10_1080_14498596_2018_1505564 crossref_primary_10_1016_j_cageo_2021_104981 crossref_primary_10_1002_cplx_21814 crossref_primary_10_1007_s12517_014_1732_0 crossref_primary_10_1016_j_jcrc_2017_06_011 crossref_primary_10_1016_j_mineng_2025_109741 crossref_primary_10_1038_s41598_021_92082_6 crossref_primary_10_3390_atmos12010009 crossref_primary_10_1016_j_procs_2018_01_035 crossref_primary_10_1007_s12517_020_05375_x crossref_primary_10_1007_s42461_025_01270_9 crossref_primary_10_1016_j_jappgeo_2020_104107 crossref_primary_10_1007_s13369_018_3423_8 crossref_primary_10_1016_j_envsoft_2015_07_007 crossref_primary_10_1007_s13369_024_09556_8 crossref_primary_10_1097_DCR_0000000000003636 crossref_primary_10_1016_j_procs_2021_06_028 crossref_primary_10_1007_s12517_019_4800_7 crossref_primary_10_1080_24701556_2019_1653321 crossref_primary_10_1155_2014_732831 crossref_primary_10_1016_j_petrol_2021_109335 crossref_primary_10_1088_1742_6596_1276_1_012025 crossref_primary_10_1109_ACCESS_2019_2951605 crossref_primary_10_3389_fenrg_2020_612165 crossref_primary_10_1155_2018_8519695 crossref_primary_10_1016_j_advwatres_2020_103619 crossref_primary_10_32604_cmes_2024_048071 crossref_primary_10_1007_s41066_018_0133_2 crossref_primary_10_1016_j_jher_2017_11_004 crossref_primary_10_32604_cmc_2021_016988 crossref_primary_10_1080_15567036_2018_1486912 crossref_primary_10_3390_su12218932 crossref_primary_10_1016_j_eswa_2022_119487 crossref_primary_10_3390_su11216083 crossref_primary_10_1007_s42452_020_3103_7 crossref_primary_10_3390_info11030167 crossref_primary_10_3390_en15196909 crossref_primary_10_1007_s10973_022_11896_2 crossref_primary_10_3390_ijgi11070371 |
| Cites_doi | 10.1023/B:MATG.0000041180.34176.65 10.1007/s11004-006-9066-4 10.1007/s11004-007-9120-x 10.1016/S0098-3004(02)00078-X 10.1016/S0020-7373(75)80002-2 10.1016/j.enconman.2007.06.015 10.2113/gsecongeo.65.4.373 10.1023/A:1011084812324 10.1023/A:1015520204066 10.1109/23.589532 10.1007/BF00890297 10.1023/A:1025180005454 10.1007/BF00890298 10.1016/j.cageo.2005.03.011 10.1016/0098-3004(93)90082-G 10.1016/j.asoc.2007.03.010 10.1007/978-1-4471-1599-1_28 10.1109/21.256541 10.1016/j.cageo.2005.12.007 10.1016/S0925-2312(98)00090-3 10.1023/A:1021677510649 10.1016/S0893-6080(99)00067-2 10.1109/ICNN.1993.298557 10.1016/S0019-9958(65)90241-X 10.1016/0893-6080(89)90020-8 10.1109/IJCNN.1999.830780 10.1007/BF02823145 10.1016/0165-0114(94)00283-D 10.1007/s11004-006-9042-z 10.1007/BF02769634 10.1007/s10596-012-9287-1 10.1109/TSMC.1985.6313399 10.1016/S0167-9236(97)00040-7 10.1007/s11004-010-9264-y 10.1109/ICNN.1995.487513 10.1007/s10596-008-9107-9 10.1007/s11053-011-9135-3 10.1016/S0305-0483(99)00027-4 10.1023/A:1014009426274 10.1007/s001260050237 10.1007/BF02068587 10.1007/s11004-005-9023-7 |
| ContentType | Journal Article |
| Copyright | 2012 Crown Copyright © 2012 Published by Elsevier Ltd. on behalf of International Association for Mathematical Geology. 2012 |
| Copyright_xml | – notice: 2012 – notice: Crown Copyright © 2012 Published by Elsevier Ltd. on behalf of International Association for Mathematical Geology. 2012 |
| DBID | 6I. AAFTH FBQ AAYXX CITATION NPM 7SC 8FD FR3 H8D JQ2 KR7 L7M L~C L~D 7X8 7S9 L.6 5PM |
| DOI | 10.1016/j.cageo.2012.02.004 |
| DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access AGRIS CrossRef PubMed Computer and Information Systems Abstracts Technology Research Database Engineering Research Database Aerospace Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional MEDLINE - Academic AGRICOLA AGRICOLA - Academic PubMed Central (Full Participant titles) |
| DatabaseTitle | CrossRef PubMed Aerospace Database Civil Engineering Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | Aerospace Database MEDLINE - Academic AGRICOLA PubMed |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Geology |
| EISSN | 1873-7803 |
| EndPage | 27 |
| ExternalDocumentID | PMC4268588 25540468 10_1016_j_cageo_2012_02_004 US201600063738 S0098300412000398 |
| Genre | Journal Article |
| GeographicLocations | Iran |
| GeographicLocations_xml | – name: Iran |
| GroupedDBID | --K --M .DC .~1 0R~ 1B1 1RT 1~. 1~5 29F 4.4 457 4G. 5GY 5VS 6I. 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAFTH AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO AAYFN ABBOA ABFNM ABMAC ABQEM ABQYD ABXDB ABYKQ ACDAQ ACGFS ACLVX ACNNM ACRLP ACSBN ACZNC ADBBV ADEZE ADJOM ADMUD AEBSH AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ASPBG ATOGT AVWKF AXJTR AZFZN BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA GBOLZ HLZ HMA HVGLF HZ~ IHE IMUCA J1W KOM LG9 LY3 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SBC SDF SDG SDP SEP SES SEW SPC SPCBC SSE SSV SSZ T5K TN5 WUQ ZCA ZMT ~02 ~G- ABPIF ABPTK FBQ 9DU AAHBH AATTM AAXKI AAYWO AAYXX ABJNI ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO ADXHL AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD BNPGV NPM SSH 7SC 8FD FR3 H8D JQ2 KR7 L7M L~C L~D 7X8 7S9 L.6 5PM |
| ID | FETCH-LOGICAL-a638t-dc0a7f9e95b5df5f27523a15893f97d20a312c6fc7298cfa7ec6ca1f9c1a20443 |
| ISICitedReferencesCount | 186 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000303291400003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0098-3004 |
| IngestDate | Tue Sep 30 17:00:40 EDT 2025 Sun Sep 28 09:01:00 EDT 2025 Sat Sep 27 22:40:46 EDT 2025 Sun Nov 09 14:42:06 EST 2025 Thu Apr 03 07:09:59 EDT 2025 Sat Nov 29 03:42:07 EST 2025 Tue Nov 18 21:43:24 EST 2025 Wed Dec 27 19:20:24 EST 2023 Fri Feb 23 02:34:01 EST 2024 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Coactive neuro-fuzzy inference system (CANFIS) Genetic algorithm Parallel optimization Grade estimation Artificial neural networks |
| Language | English |
| License | http://creativecommons.org/licenses/by-nc-nd/3.0 https://www.elsevier.com/tdm/userlicense/1.0 Open Access under CC BY-NC-ND 3.0 license |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-a638t-dc0a7f9e95b5df5f27523a15893f97d20a312c6fc7298cfa7ec6ca1f9c1a20443 |
| Notes | http://dx.doi.org/10.1016/j.cageo.2012.02.004 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| OpenAccessLink | https://pubmed.ncbi.nlm.nih.gov/PMC4268588 |
| PMID | 25540468 |
| PQID | 1642276989 |
| PQPubID | 23500 |
| PageCount | 10 |
| ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_4268588 proquest_miscellaneous_2000073308 proquest_miscellaneous_1859697294 proquest_miscellaneous_1642276989 pubmed_primary_25540468 crossref_primary_10_1016_j_cageo_2012_02_004 crossref_citationtrail_10_1016_j_cageo_2012_02_004 fao_agris_US201600063738 elsevier_sciencedirect_doi_10_1016_j_cageo_2012_02_004 |
| PublicationCentury | 2000 |
| PublicationDate | 2012-05-01 |
| PublicationDateYYYYMMDD | 2012-05-01 |
| PublicationDate_xml | – month: 05 year: 2012 text: 2012-05-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States |
| PublicationTitle | Computers & geosciences |
| PublicationTitleAlternate | Comput Geosci |
| PublicationYear | 2012 |
| Publisher | Elsevier Ltd Pergamon Press |
| Publisher_xml | – name: Elsevier Ltd – name: Pergamon Press |
| References | Lowell, Guilbert (bib41) 1970; 65 Galatakis, Theodoridis, Kouridou (bib16) 2002 Mamdani, Assilian (bib44) 1975; 7 Yama, Lineberry (bib72) 1999; 51 Yager, Zadeh (bib71) 1994 Lacassie, Solar, Roser, Hervé (bib40) 2006; 38 Tahmasebi, P., Hezarkhani, A. Multiple geostatistical simulation. In: Geostatistics, InTech Publication (in press). Hezarkhani (bib20) 2002; 13 Porwal, Carranza, Hale (bib48) 2004; 36 Weller, Corcoran, Harris, Ware (bib67) 2005; 31 Weller, Harris, Ware (bib68) 2007; 39 Kapageridis, I.K., Denby, B., 1998. Neural network modeling for ore grade spatial variability. Prpceedings of the 8th International Conference on Artificial Neural Networks (ICANN), Skovde, Sweeden, pp. 209–214. Tahmasebi, Hezarkhani (bib58) 2009; IAMG09 Sexton, Dorsey, Johnson (bib53) 1998; 22 Tutmez, B., 2005. Reserve estimation using fuzzy set theory. Unpublished Ph.D dissertation, Hacettepe University, Ankara, pp. 168. Ghezelayagh, Lee (bib17) 1999; 2 Demuth, Beale (bib13) 2002 Rendu, J.M., 1979. Kriging, logarithmic Kriging, and conditional expectation: comparison of theory with actual results, Proc. 16th APCOM Symposium. Tucson, Arizona, pp. 199–212. Jagielska, Matthews, Whitfort (bib28) 1999; 24 Goldberg (bib18) 1989 Hezarkhani, A., Williams, J.A.E., Gammons, C., 1997. Copper solubility and deposition conditions in the potassic and phyllic alteration zones, at the Sungun porphyry copper deposit, Iran. Geological Association of Canada and Mineralogical Association of Canada (GAC–MAC), Annual Meeting, Ottawa pp. 65–72. Singer, Kouda (bib55) 1996; 28 Bardossy, Bogardi, Kelly (bib3) 1990; 22 Koike, Matsuda, Gu (bib38) 2001; 33 Chaturvedi, D.K., Satsangi, P.S., Kalra, P.K., 1996. Effect of different mappings and normalization of neural network models. Ninth National Power Systems Conference, Indian institute of Technology, Kanpur 1, pp. 377–386. Samanta, Bandopadhyay, Ganguli (bib52) 2004; 11 Ying, Pan (bib73) 2008; 49 Jang, Sun, Mizutani (bib31) 1997 Journel, Huijbregts (bib32) 1978 Koike, Matsuda (bib37) 2003; 12 Pham (bib47) 1997; 29 Singer (bib54) 2006; 38 Sola, Sevilla (bib56) 1997; 44 Deb (bib12) 1999; 24 Ishigami (bib27) 1995; 71 Tahmasebi, Hezarkhani (bib60) 2010 b; 4 Holland (bib25) 1975 Etminan, H., 1977. A porphyry copper–molybdenum deposit near the Sungun village. Internal Report, Geological Survey of Iran, p. 240. Koike, Matsuda, Suzuki, Ohmi (bib39) 2002; 11 Cheng, Agterberg (bib10) 1999; 8 Mizutani, E., Jang, J.S.R., 1995. Coactive neural fuzzy modeling. In proceedings of the International Conference on Neural Network, pp. 760–765. Ke, J., 2002. Neural network modeling of placer ore grade spatial variability. Unpublished Ph.D Dissertation, University of Alaska Fairbanks, pp. 251. Bardossy, Szabo, Varga (bib5) 2003; 1 Kim, Kasabov (bib36) 1999; 12 Weller, Harris, Ware, Jarvis (bib69) 2006; 32 Hornik, Stinchcombe, White (bib26) 1989; 2 Asadi, Tahmasebi (bib1) 2011 Denby, B., Burnett, C., 1993. A neural network based tool for grade estimation, 24th International Symposium on the Application of Computer and Operation Research in the Mineral Industries (APCOM), Montreal, Quebec. Hezarkhani, Williams, Gammons (bib23) 1999; 34 Chatterjee, Bandopadhyay, Machuca (bib8) 2010; 42 Ross (bib51) 2006 Wu, Zhou (bib70) 1993; 19 Zadeh (bib74) 1965; 8 Kapageridis, Denby, Hunter (bib34) 1999; 6 Hezarkhani, Williams (bib21) 1998; 93 Bazin, D., Hübner, H., 1969. Copper deposits in Iran , Report No 13. Ministry of Economy, Geological Survey of Iran. 365 pp. Strebelle (bib57) 2002; 34 Rice (bib50) 2006 Tahmasebi, Hezarkhani (bib61) 2011; 20 Buragohain, Mahanta (bib7) 2008; 8 Clarici, Owen, Durucan, Ravencroft (bib11) 1993 Jang (bib30) 1993; 23 Gupta, Sexton (bib19) 1999; 27 Tahmasebi, P., Hezarkhani, A., Sahimi, M. Multiple-Point Geostatistical Modeling based on the Cross-Correlation Functions, Computational Geosciences (in press). Jang, J.S.R., 1992. Neuro-fuzzy modeling: architecture, analyses and applications. Unpublished Ph.D Dissertation, Department of Electrical Engineering and Computer Science, University of California, Berkeley, California. Mahmoudabadi, Izadi, Menhaj (bib43) 2009; 13 McInerney, M., Dhawan, A.P., 1993. Use of genetic algorithms with backpropagation in training of feedforward neural networks. In: Proceedings of the IEEE International Conference on Neural Networks, pp. 203–208. Takagi, Sugeno (bib64) 1985; 15 Bardossy, Bogardi, Kelly (bib2) 1990; 22 Bardossy, Fodor (bib4) 2005; 2 Tahmasebi, Hezarkhani (bib59) 2010; 4 Luo, Dimitrakopoulos (bib42) 2003; 29 Tutmez, Tercan, Kaymak (bib66) 2007; 39 10.1016/j.cageo.2012.02.004_bib6 Singer (10.1016/j.cageo.2012.02.004_bib55) 1996; 28 Koike (10.1016/j.cageo.2012.02.004_bib37) 2003; 12 Kapageridis (10.1016/j.cageo.2012.02.004_bib34) 1999; 6 Jagielska (10.1016/j.cageo.2012.02.004_bib28) 1999; 24 Wu (10.1016/j.cageo.2012.02.004_bib70) 1993; 19 Bardossy (10.1016/j.cageo.2012.02.004_bib4) 2005; 2 Weller (10.1016/j.cageo.2012.02.004_bib67) 2005; 31 Pham (10.1016/j.cageo.2012.02.004_bib47) 1997; 29 Porwal (10.1016/j.cageo.2012.02.004_bib48) 2004; 36 Hornik (10.1016/j.cageo.2012.02.004_bib26) 1989; 2 10.1016/j.cageo.2012.02.004_bib33 Tahmasebi (10.1016/j.cageo.2012.02.004_bib61) 2011; 20 10.1016/j.cageo.2012.02.004_bib35 Gupta (10.1016/j.cageo.2012.02.004_bib19) 1999; 27 Deb (10.1016/j.cageo.2012.02.004_bib12) 1999; 24 Luo (10.1016/j.cageo.2012.02.004_bib42) 2003; 29 Ghezelayagh (10.1016/j.cageo.2012.02.004_bib17) 1999; 2 Galatakis (10.1016/j.cageo.2012.02.004_bib16) 2002 Cheng (10.1016/j.cageo.2012.02.004_bib10) 1999; 8 Yama (10.1016/j.cageo.2012.02.004_bib72) 1999; 51 Tahmasebi (10.1016/j.cageo.2012.02.004_bib59) 2010; 4 Ying (10.1016/j.cageo.2012.02.004_bib73) 2008; 49 10.1016/j.cageo.2012.02.004_bib62 10.1016/j.cageo.2012.02.004_bib63 Bardossy (10.1016/j.cageo.2012.02.004_bib2) 1990; 22 10.1016/j.cageo.2012.02.004_bib65 Hezarkhani (10.1016/j.cageo.2012.02.004_bib23) 1999; 34 Yager (10.1016/j.cageo.2012.02.004_bib71) 1994 Sola (10.1016/j.cageo.2012.02.004_bib56) 1997; 44 Bardossy (10.1016/j.cageo.2012.02.004_bib5) 2003; 1 Chatterjee (10.1016/j.cageo.2012.02.004_bib8) 2010; 42 10.1016/j.cageo.2012.02.004_bib29 10.1016/j.cageo.2012.02.004_bib22 10.1016/j.cageo.2012.02.004_bib9 Koike (10.1016/j.cageo.2012.02.004_bib39) 2002; 11 Tahmasebi (10.1016/j.cageo.2012.02.004_bib58) 2009; IAMG09 Bardossy (10.1016/j.cageo.2012.02.004_bib3) 1990; 22 Koike (10.1016/j.cageo.2012.02.004_bib38) 2001; 33 Tahmasebi (10.1016/j.cageo.2012.02.004_bib60) 2010; 4 Weller (10.1016/j.cageo.2012.02.004_bib69) 2006; 32 Rice (10.1016/j.cageo.2012.02.004_bib50) 2006 Samanta (10.1016/j.cageo.2012.02.004_bib52) 2004; 11 Buragohain (10.1016/j.cageo.2012.02.004_bib7) 2008; 8 10.1016/j.cageo.2012.02.004_bib15 Sexton (10.1016/j.cageo.2012.02.004_bib53) 1998; 22 Zadeh (10.1016/j.cageo.2012.02.004_bib74) 1965; 8 Goldberg (10.1016/j.cageo.2012.02.004_bib18) 1989 Mahmoudabadi (10.1016/j.cageo.2012.02.004_bib43) 2009; 13 Mamdani (10.1016/j.cageo.2012.02.004_bib44) 1975; 7 Ishigami (10.1016/j.cageo.2012.02.004_bib27) 1995; 71 Strebelle (10.1016/j.cageo.2012.02.004_bib57) 2002; 34 10.1016/j.cageo.2012.02.004_bib14 Singer (10.1016/j.cageo.2012.02.004_bib54) 2006; 38 Weller (10.1016/j.cageo.2012.02.004_bib68) 2007; 39 Hezarkhani (10.1016/j.cageo.2012.02.004_bib21) 1998; 93 Jang (10.1016/j.cageo.2012.02.004_bib30) 1993; 23 Takagi (10.1016/j.cageo.2012.02.004_bib64) 1985; 15 Ross (10.1016/j.cageo.2012.02.004_bib51) 2006 Jang (10.1016/j.cageo.2012.02.004_bib31) 1997 Kim (10.1016/j.cageo.2012.02.004_bib36) 1999; 12 Lowell (10.1016/j.cageo.2012.02.004_bib41) 1970; 65 Journel (10.1016/j.cageo.2012.02.004_bib32) 1978 Tutmez (10.1016/j.cageo.2012.02.004_bib66) 2007; 39 Lacassie (10.1016/j.cageo.2012.02.004_bib40) 2006; 38 Demuth (10.1016/j.cageo.2012.02.004_bib13) 2002 Hezarkhani (10.1016/j.cageo.2012.02.004_bib20) 2002; 13 Asadi (10.1016/j.cageo.2012.02.004_bib1) 2011 Holland (10.1016/j.cageo.2012.02.004_bib25) 1975 10.1016/j.cageo.2012.02.004_bib49 Clarici (10.1016/j.cageo.2012.02.004_bib11) 1993 10.1016/j.cageo.2012.02.004_bib45 10.1016/j.cageo.2012.02.004_bib46 |
| References_xml | – volume: 36 start-page: 803 year: 2004 end-page: 826 ident: bib48 article-title: A hybrid neuro-fuzzy model for mineral potential mapping publication-title: Mathematical Geology – volume: 12 start-page: 301 year: 1999 end-page: 1319 ident: bib36 article-title: HyFIS: adaptive neuro-fuzzy inference systems and their application to nonlinear dynamical systems publication-title: Journal of Neural Network – volume: 38 start-page: 697 year: 2006 end-page: 710 ident: bib40 article-title: Visualization of volcanic rock geochemical data and classification with artificial neural networks publication-title: Mathematical Geology – reference: McInerney, M., Dhawan, A.P., 1993. Use of genetic algorithms with backpropagation in training of feedforward neural networks. In: Proceedings of the IEEE International Conference on Neural Networks, pp. 203–208. – reference: Tahmasebi, P., Hezarkhani, A. Multiple geostatistical simulation. In: Geostatistics, InTech Publication (in press). – volume: 2 start-page: 978 year: 1999 end-page: 982 ident: bib17 article-title: Training neuro-fuzzy boiler identifier with genetic algorithm and error backpropagation publication-title: IEEE Power Engineering Society, Summer Meeting – volume: 7 start-page: 1 year: 1975 end-page: 13 ident: bib44 article-title: An experiment in linguistic synthesis with a fuzzy logic controller publication-title: International Journal Man Machine – volume: 39 start-page: 657 year: 2007 end-page: 671 ident: bib68 article-title: Two supervised neural networks for classification of sedimentary organic matter images from palynological preparations publication-title: Mathematical Geology – reference: Denby, B., Burnett, C., 1993. A neural network based tool for grade estimation, 24th International Symposium on the Application of Computer and Operation Research in the Mineral Industries (APCOM), Montreal, Quebec. – reference: Tutmez, B., 2005. Reserve estimation using fuzzy set theory. Unpublished Ph.D dissertation, Hacettepe University, Ankara, pp. 168. – year: 1978 ident: bib32 article-title: Mining Geostatistics – year: 2011 ident: bib1 article-title: Comparative evaluation of back-propagation neural network learning algorithms and empirical correlations for prediction of oil PVT properties in Iran oilfields publication-title: Journal of Petroleum Science and Engineering – volume: 15 start-page: 116 year: 1985 end-page: 132 ident: bib64 article-title: Fuzzy identification of systems and its applications to modeling and control publication-title: IEEE Transactions on Systems, Man, and Cybernetics – year: 1994 ident: bib71 publication-title: Fuzzy Sets Neural Networks and Soft Computing – year: 2006 ident: bib51 publication-title: Fuzzy logic with Engineering Applications – volume: 51 start-page: 59 year: 1999 end-page: 64 ident: bib72 article-title: Artificial neural network application for a predictive task in mining publication-title: Mining Engineering – volume: 24 start-page: 293 year: 1999 end-page: 315 ident: bib12 article-title: An introduction to genetic algorithms publication-title: Sadhana – reference: Bazin, D., Hübner, H., 1969. Copper deposits in Iran , Report No 13. Ministry of Economy, Geological Survey of Iran. 365 pp. – volume: 4 start-page: 408 year: 2010 b end-page: 420 ident: bib60 article-title: Application of adaptive neuro-fuzzy inference system for grade estimation; case study, sarcheshmeh porphyry copper deposit, Kerman, Iran publication-title: Australian Journal of Basic and Applied Sciences – volume: 71 start-page: 257 year: 1995 end-page: 264 ident: bib27 article-title: Structure optimization of fuzzy neural network by genetic algorithm publication-title: Fuzzy Sets and System – volume: 32 start-page: 1357 year: 2006 end-page: 1367 ident: bib69 article-title: Determining the saliency of feature measurements obtained from images of sedimentary organic matter for use in its classification publication-title: Computers & Geosciences – volume: 8 start-page: 338 year: 1965 end-page: 353 ident: bib74 article-title: Fuzzy sets publication-title: Information and Control – reference: Chaturvedi, D.K., Satsangi, P.S., Kalra, P.K., 1996. Effect of different mappings and normalization of neural network models. Ninth National Power Systems Conference, Indian institute of Technology, Kanpur 1, pp. 377–386. – start-page: 145 year: 1993 end-page: 152 ident: bib11 article-title: Recoverable reserve estimation using a neural network publication-title: 24th International Symposium on the Application of Computer and Operation Research in the Mineral Industries (APCOM) – volume: 65 start-page: 373 year: 1970 end-page: 408 ident: bib41 article-title: Lateral and vertical alteration– mineralization zoning in porphyry ore deposits publication-title: Economic Geology – volume: 19 start-page: 567 year: 1993 end-page: 575 ident: bib70 article-title: Reserve estimation using neural network techniques publication-title: Computers & Geosciences – year: 1997 ident: bib31 publication-title: Neuro-Fuzzy and Soft Computing: A Computational Approach to Learning and Machine Intelligent – volume: 1 start-page: 14 year: 2003 end-page: 26 ident: bib5 article-title: A new method of resource estimation for bauxite and other solid mineral deposits publication-title: Journal of Hungarian Geomatematics – volume: 42 start-page: 309 year: 2010 end-page: 326 ident: bib8 article-title: Ore grade prediction using a genetic algorithm and clustering based ensemble neural network model publication-title: Mathematical Geosciences – volume: 20 start-page: 25 year: 2011 end-page: 32 ident: bib61 article-title: Application of a modular feedforward neural network for grade estimation publication-title: Natural Resources Research – year: 2002 ident: bib13 article-title: Neural Network Toolbox for Use with MATLAB – year: 1975 ident: bib25 article-title: Adaptation in Natural and Artificial Systems. Ann Arbor: University of Michigan Press. (A 2nd edn was published in 1992 – reference: Mizutani, E., Jang, J.S.R., 1995. Coactive neural fuzzy modeling. In proceedings of the International Conference on Neural Network, pp. 760–765. – volume: 29 start-page: 291 year: 1997 end-page: 305 ident: bib47 article-title: Grade estimation using fuzzy-set algorithms publication-title: Mathematical Geology – reference: Kapageridis, I.K., Denby, B., 1998. Neural network modeling for ore grade spatial variability. Prpceedings of the 8th International Conference on Artificial Neural Networks (ICANN), Skovde, Sweeden, pp. 209–214. – volume: 23 start-page: 665 year: 1993 end-page: 685 ident: bib30 article-title: ANFIS: adaptive-network-based fuzzy inference system publication-title: IEEE Transaction on Systems, Man and Cybernetics – volume: 8 start-page: 27 year: 1999 end-page: 35 ident: bib10 article-title: Fuzzy weights of evidence method and its application in mineral potential mapping publication-title: Natural Resources Research – volume: 24 start-page: 37 year: 1999 end-page: 54 ident: bib28 article-title: An investigation into the application of neural networks, fuzzy logic, genetic algorithms, and rough sets to automated knowledge acquisition for classification problems publication-title: Neurocomposites – volume: 38 start-page: 465 year: 2006 end-page: 475 ident: bib54 article-title: Typing mineral deposits using their associated rocks and grades and tonnages in a probabilistic neural network publication-title: Mathematical Geology – volume: 13 start-page: 668 year: 2002 end-page: 687 ident: bib20 article-title: Specific physico-chemical conditions (360 publication-title: Amirkabir Journal of Sciences and Technology – start-page: 425 year: 2002 end-page: 431 ident: bib16 article-title: Lignite quality estimation using ANN and adaptive neuro-fuzzy inference systems (ANFIS) publication-title: APCOM – volume: 93 year: 1998 ident: bib21 publication-title: Controls of Alteration and Mineralization in the Sungun Porphyry Copper Deposit – volume: 6 start-page: 3908 year: 1999 end-page: 3912 ident: bib34 article-title: Integration of a neural ore grade estimation tool in a 3D resource modeling package, neural networks. IJCNN ‘99 publication-title: International Joint Conference on Neural Network – volume: 33 start-page: 421 year: 2001 end-page: 448 ident: bib38 article-title: Evaluation of interpolation accuracy of neural kriging with application to temperature-distribution analysis publication-title: Mathematical Geology – volume: 12 start-page: 209 year: 2003 end-page: 223 ident: bib37 article-title: Characterizing content distributions of impurities in a limestone mine using a feed forward neural network publication-title: Natural Resources Research – volume: 44 start-page: 1464 year: 1997 end-page: 1468 ident: bib56 article-title: Importance of input data normalization for the application of neural networks to complex industrial problems publication-title: IEEE Transactions on Nuclear Science – volume: 29 start-page: 3 year: 2003 end-page: 13 ident: bib42 article-title: Data-driven fuzzy analysis in quantitative mineral resource assessment publication-title: Computers & Geosciences – volume: 28 start-page: 1017 year: 1996 end-page: 1023 ident: bib55 article-title: Application of a feed forward neural network in the search for Kuroko deposits in the Hokuroku district, Japan publication-title: Mathematical Geology – year: 1989 ident: bib18 publication-title: Genetic Algorithms in Search, Optimization, and Machine Learning – volume: 11 start-page: 69 year: 2004 end-page: 76 ident: bib52 article-title: Data segmentation and genetic algorithms for sparse data division in Nome placer gold grade estimation using neural network and geostatistics publication-title: Mining Exploration Geology – year: 2006 ident: bib50 publication-title: Mathematical Statistics and Data Analysis – reference: Hezarkhani, A., Williams, J.A.E., Gammons, C., 1997. Copper solubility and deposition conditions in the potassic and phyllic alteration zones, at the Sungun porphyry copper deposit, Iran. Geological Association of Canada and Mineralogical Association of Canada (GAC–MAC), Annual Meeting, Ottawa pp. 65–72. – volume: 2 start-page: 359 year: 1989 end-page: 366 ident: bib26 article-title: Multilayer feedforward networks are universal approximators publication-title: Neural Network – volume: 34 start-page: 1 year: 2002 end-page: 22 ident: bib57 article-title: Conditional simulation of complex geological structures using multiple-point geostatistics publication-title: Mathematical Geology – volume: 2 start-page: 217 year: 2005 end-page: 224 ident: bib4 article-title: Assessment of the completeness of mineral exploration by the application of fuzzy arithmetic and prior information publication-title: Acta Polytechnica Hungaricae – volume: 49 start-page: 205 year: 2008 end-page: 211 ident: bib73 article-title: Using adaptive network based fuzzy inference system to forecast regional electricity loads publication-title: Energy Conversation and Management – volume: 13 start-page: 91 year: 2009 end-page: 101 ident: bib43 article-title: A hybrid method for grade estimation using genetic algorithm and neural networks publication-title: Computational Geosciences – reference: Rendu, J.M., 1979. Kriging, logarithmic Kriging, and conditional expectation: comparison of theory with actual results, Proc. 16th APCOM Symposium. Tucson, Arizona, pp. 199–212. – reference: Ke, J., 2002. Neural network modeling of placer ore grade spatial variability. Unpublished Ph.D Dissertation, University of Alaska Fairbanks, pp. 251. – volume: 27 start-page: 679 year: 1999 end-page: 684 ident: bib19 article-title: Comparing backpropagation with a genetic algorithm for neural network training publication-title: Omega – volume: 39 start-page: 87 year: 2007 end-page: 111 ident: bib66 article-title: Fuzzy modeling for reserve estimation based on spatial variability publication-title: Mathematical Geology – volume: 22 start-page: 63 year: 1990 end-page: 79 ident: bib2 article-title: Kriging with imprecise (Fuzzy) variogram I: theory publication-title: Mathematical Geology – reference: Jang, J.S.R., 1992. Neuro-fuzzy modeling: architecture, analyses and applications. Unpublished Ph.D Dissertation, Department of Electrical Engineering and Computer Science, University of California, Berkeley, California. – volume: 4 start-page: 764 year: 2010 end-page: 772 ident: bib59 article-title: Comparison of optimized neural network with fuzzy logic for ore grade estimation publication-title: Australian Journal of Basic and Applied Sciences – reference: Etminan, H., 1977. A porphyry copper–molybdenum deposit near the Sungun village. Internal Report, Geological Survey of Iran, p. 240. – volume: IAMG09 year: 2009 ident: bib58 publication-title: Application of Optimized Neural Network by Genetic Algorithm – volume: 11 start-page: 135 year: 2002 end-page: 156 ident: bib39 article-title: Neural network-based estimation of principal metal contents in the Hokuroku district, Northern Japan, for exploring Kuroko-type deposits publication-title: Natural Resources Research – reference: Tahmasebi, P., Hezarkhani, A., Sahimi, M. Multiple-Point Geostatistical Modeling based on the Cross-Correlation Functions, Computational Geosciences (in press). – volume: 22 start-page: 81 year: 1990 end-page: 94 ident: bib3 article-title: Kriging with imprecise (fuzzy) variograms. II application publication-title: Mathematical Geology – volume: 34 start-page: 770 year: 1999 end-page: 783 ident: bib23 article-title: Factors controlling copper solubility and chalcopyrite deposition in the Sungun porphyry copper deposit, Iran publication-title: Mineralium Deposita – volume: 22 start-page: 171 year: 1998 end-page: 185 ident: bib53 article-title: Toward global optimization of neural networks: a comparison of the genetic algorithm and backpropagation publication-title: Decision Support Systems – volume: 31 start-page: 1213 year: 2005 end-page: 1223 ident: bib67 article-title: The semi-automated classification of sedimentary organic matter in palynological preparations publication-title: Computers & Geosciences – volume: 8 start-page: 609 year: 2008 end-page: 625 ident: bib7 article-title: A novel approach for ANFIS modeling based on full factorial design publication-title: Applied Soft Computing archive – ident: 10.1016/j.cageo.2012.02.004_bib15 – volume: 36 start-page: 803 issue: 7 year: 2004 ident: 10.1016/j.cageo.2012.02.004_bib48 article-title: A hybrid neuro-fuzzy model for mineral potential mapping publication-title: Mathematical Geology doi: 10.1023/B:MATG.0000041180.34176.65 – volume: 39 start-page: 87 issue: 1 year: 2007 ident: 10.1016/j.cageo.2012.02.004_bib66 article-title: Fuzzy modeling for reserve estimation based on spatial variability publication-title: Mathematical Geology doi: 10.1007/s11004-006-9066-4 – start-page: 145 year: 1993 ident: 10.1016/j.cageo.2012.02.004_bib11 article-title: Recoverable reserve estimation using a neural network – volume: 39 start-page: 657 issue: 1 year: 2007 ident: 10.1016/j.cageo.2012.02.004_bib68 article-title: Two supervised neural networks for classification of sedimentary organic matter images from palynological preparations publication-title: Mathematical Geology doi: 10.1007/s11004-007-9120-x – volume: 29 start-page: 3 year: 2003 ident: 10.1016/j.cageo.2012.02.004_bib42 article-title: Data-driven fuzzy analysis in quantitative mineral resource assessment publication-title: Computers & Geosciences doi: 10.1016/S0098-3004(02)00078-X – volume: 7 start-page: 1 issue: 1 year: 1975 ident: 10.1016/j.cageo.2012.02.004_bib44 article-title: An experiment in linguistic synthesis with a fuzzy logic controller publication-title: International Journal Man Machine doi: 10.1016/S0020-7373(75)80002-2 – volume: 49 start-page: 205 year: 2008 ident: 10.1016/j.cageo.2012.02.004_bib73 article-title: Using adaptive network based fuzzy inference system to forecast regional electricity loads publication-title: Energy Conversation and Management doi: 10.1016/j.enconman.2007.06.015 – volume: 1 start-page: 14 year: 2003 ident: 10.1016/j.cageo.2012.02.004_bib5 article-title: A new method of resource estimation for bauxite and other solid mineral deposits publication-title: Journal of Hungarian Geomatematics – ident: 10.1016/j.cageo.2012.02.004_bib9 – year: 1978 ident: 10.1016/j.cageo.2012.02.004_bib32 – volume: 65 start-page: 373 year: 1970 ident: 10.1016/j.cageo.2012.02.004_bib41 article-title: Lateral and vertical alteration– mineralization zoning in porphyry ore deposits publication-title: Economic Geology doi: 10.2113/gsecongeo.65.4.373 – year: 2011 ident: 10.1016/j.cageo.2012.02.004_bib1 article-title: Comparative evaluation of back-propagation neural network learning algorithms and empirical correlations for prediction of oil PVT properties in Iran oilfields publication-title: Journal of Petroleum Science and Engineering – volume: 33 start-page: 421 issue: 4 year: 2001 ident: 10.1016/j.cageo.2012.02.004_bib38 article-title: Evaluation of interpolation accuracy of neural kriging with application to temperature-distribution analysis publication-title: Mathematical Geology doi: 10.1023/A:1011084812324 – volume: 11 start-page: 135 issue: 2 year: 2002 ident: 10.1016/j.cageo.2012.02.004_bib39 article-title: Neural network-based estimation of principal metal contents in the Hokuroku district, Northern Japan, for exploring Kuroko-type deposits publication-title: Natural Resources Research doi: 10.1023/A:1015520204066 – volume: 44 start-page: 1464 issue: 3 year: 1997 ident: 10.1016/j.cageo.2012.02.004_bib56 article-title: Importance of input data normalization for the application of neural networks to complex industrial problems publication-title: IEEE Transactions on Nuclear Science doi: 10.1109/23.589532 – volume: 22 start-page: 63 issue: 1 year: 1990 ident: 10.1016/j.cageo.2012.02.004_bib2 article-title: Kriging with imprecise (Fuzzy) variogram I: theory publication-title: Mathematical Geology doi: 10.1007/BF00890297 – year: 2002 ident: 10.1016/j.cageo.2012.02.004_bib13 – volume: 12 start-page: 209 issue: 3 year: 2003 ident: 10.1016/j.cageo.2012.02.004_bib37 article-title: Characterizing content distributions of impurities in a limestone mine using a feed forward neural network publication-title: Natural Resources Research doi: 10.1023/A:1025180005454 – volume: 11 start-page: 69 issue: 1–4 year: 2004 ident: 10.1016/j.cageo.2012.02.004_bib52 article-title: Data segmentation and genetic algorithms for sparse data division in Nome placer gold grade estimation using neural network and geostatistics publication-title: Mining Exploration Geology – volume: 22 start-page: 81 issue: 1 year: 1990 ident: 10.1016/j.cageo.2012.02.004_bib3 article-title: Kriging with imprecise (fuzzy) variograms. II application publication-title: Mathematical Geology doi: 10.1007/BF00890298 – ident: 10.1016/j.cageo.2012.02.004_bib62 – volume: 31 start-page: 1213 issue: 10 year: 2005 ident: 10.1016/j.cageo.2012.02.004_bib67 article-title: The semi-automated classification of sedimentary organic matter in palynological preparations publication-title: Computers & Geosciences doi: 10.1016/j.cageo.2005.03.011 – volume: 19 start-page: 567 issue: 4 year: 1993 ident: 10.1016/j.cageo.2012.02.004_bib70 article-title: Reserve estimation using neural network techniques publication-title: Computers & Geosciences doi: 10.1016/0098-3004(93)90082-G – volume: 8 start-page: 609 year: 2008 ident: 10.1016/j.cageo.2012.02.004_bib7 article-title: A novel approach for ANFIS modeling based on full factorial design publication-title: Applied Soft Computing archive doi: 10.1016/j.asoc.2007.03.010 – ident: 10.1016/j.cageo.2012.02.004_bib33 doi: 10.1007/978-1-4471-1599-1_28 – volume: 23 start-page: 665 issue: 3 year: 1993 ident: 10.1016/j.cageo.2012.02.004_bib30 article-title: ANFIS: adaptive-network-based fuzzy inference system publication-title: IEEE Transaction on Systems, Man and Cybernetics doi: 10.1109/21.256541 – volume: 32 start-page: 1357 issue: 9 year: 2006 ident: 10.1016/j.cageo.2012.02.004_bib69 article-title: Determining the saliency of feature measurements obtained from images of sedimentary organic matter for use in its classification publication-title: Computers & Geosciences doi: 10.1016/j.cageo.2005.12.007 – volume: 13 start-page: 668 issue: 52 year: 2002 ident: 10.1016/j.cageo.2012.02.004_bib20 article-title: Specific physico-chemical conditions (360°C) for chalcopyrite dissolution/deposition in the Sungun porphyry copper deposit, Iran publication-title: Amirkabir Journal of Sciences and Technology – volume: 24 start-page: 37 year: 1999 ident: 10.1016/j.cageo.2012.02.004_bib28 article-title: An investigation into the application of neural networks, fuzzy logic, genetic algorithms, and rough sets to automated knowledge acquisition for classification problems publication-title: Neurocomposites doi: 10.1016/S0925-2312(98)00090-3 – volume: 8 start-page: 27 issue: 1 year: 1999 ident: 10.1016/j.cageo.2012.02.004_bib10 article-title: Fuzzy weights of evidence method and its application in mineral potential mapping publication-title: Natural Resources Research doi: 10.1023/A:1021677510649 – volume: 12 start-page: 301 year: 1999 ident: 10.1016/j.cageo.2012.02.004_bib36 article-title: HyFIS: adaptive neuro-fuzzy inference systems and their application to nonlinear dynamical systems publication-title: Journal of Neural Network doi: 10.1016/S0893-6080(99)00067-2 – ident: 10.1016/j.cageo.2012.02.004_bib6 – volume: 4 start-page: 408 issue: 3 year: 2010 ident: 10.1016/j.cageo.2012.02.004_bib60 article-title: Application of adaptive neuro-fuzzy inference system for grade estimation; case study, sarcheshmeh porphyry copper deposit, Kerman, Iran publication-title: Australian Journal of Basic and Applied Sciences – ident: 10.1016/j.cageo.2012.02.004_bib65 – ident: 10.1016/j.cageo.2012.02.004_bib45 doi: 10.1109/ICNN.1993.298557 – year: 2006 ident: 10.1016/j.cageo.2012.02.004_bib51 – year: 2006 ident: 10.1016/j.cageo.2012.02.004_bib50 – volume: IAMG09 year: 2009 ident: 10.1016/j.cageo.2012.02.004_bib58 – volume: 4 start-page: 764 issue: 5 year: 2010 ident: 10.1016/j.cageo.2012.02.004_bib59 article-title: Comparison of optimized neural network with fuzzy logic for ore grade estimation publication-title: Australian Journal of Basic and Applied Sciences – volume: 8 start-page: 338 year: 1965 ident: 10.1016/j.cageo.2012.02.004_bib74 article-title: Fuzzy sets publication-title: Information and Control doi: 10.1016/S0019-9958(65)90241-X – volume: 2 start-page: 359 issue: 5 year: 1989 ident: 10.1016/j.cageo.2012.02.004_bib26 article-title: Multilayer feedforward networks are universal approximators publication-title: Neural Network doi: 10.1016/0893-6080(89)90020-8 – volume: 6 start-page: 3908 year: 1999 ident: 10.1016/j.cageo.2012.02.004_bib34 article-title: Integration of a neural ore grade estimation tool in a 3D resource modeling package, neural networks. IJCNN ‘99 publication-title: International Joint Conference on Neural Network doi: 10.1109/IJCNN.1999.830780 – volume: 24 start-page: 293 issue: 4–5 year: 1999 ident: 10.1016/j.cageo.2012.02.004_bib12 article-title: An introduction to genetic algorithms publication-title: Sadhana doi: 10.1007/BF02823145 – volume: 71 start-page: 257 year: 1995 ident: 10.1016/j.cageo.2012.02.004_bib27 article-title: Structure optimization of fuzzy neural network by genetic algorithm publication-title: Fuzzy Sets and System doi: 10.1016/0165-0114(94)00283-D – year: 1975 ident: 10.1016/j.cageo.2012.02.004_bib25 – ident: 10.1016/j.cageo.2012.02.004_bib49 – year: 1997 ident: 10.1016/j.cageo.2012.02.004_bib31 – start-page: 425 year: 2002 ident: 10.1016/j.cageo.2012.02.004_bib16 article-title: Lignite quality estimation using ANN and adaptive neuro-fuzzy inference systems (ANFIS) publication-title: APCOM – volume: 2 start-page: 978 year: 1999 ident: 10.1016/j.cageo.2012.02.004_bib17 article-title: Training neuro-fuzzy boiler identifier with genetic algorithm and error backpropagation publication-title: IEEE Power Engineering Society, Summer Meeting – ident: 10.1016/j.cageo.2012.02.004_bib22 – year: 1994 ident: 10.1016/j.cageo.2012.02.004_bib71 – volume: 2 start-page: 217 issue: 1 year: 2005 ident: 10.1016/j.cageo.2012.02.004_bib4 article-title: Assessment of the completeness of mineral exploration by the application of fuzzy arithmetic and prior information publication-title: Acta Polytechnica Hungaricae – year: 1989 ident: 10.1016/j.cageo.2012.02.004_bib18 – volume: 38 start-page: 697 issue: 6 year: 2006 ident: 10.1016/j.cageo.2012.02.004_bib40 article-title: Visualization of volcanic rock geochemical data and classification with artificial neural networks publication-title: Mathematical Geology doi: 10.1007/s11004-006-9042-z – ident: 10.1016/j.cageo.2012.02.004_bib35 – volume: 29 start-page: 291 issue: 2 year: 1997 ident: 10.1016/j.cageo.2012.02.004_bib47 article-title: Grade estimation using fuzzy-set algorithms publication-title: Mathematical Geology doi: 10.1007/BF02769634 – ident: 10.1016/j.cageo.2012.02.004_bib63 doi: 10.1007/s10596-012-9287-1 – volume: 51 start-page: 59 issue: 2 year: 1999 ident: 10.1016/j.cageo.2012.02.004_bib72 article-title: Artificial neural network application for a predictive task in mining publication-title: Mining Engineering – volume: 15 start-page: 116 issue: 1 year: 1985 ident: 10.1016/j.cageo.2012.02.004_bib64 article-title: Fuzzy identification of systems and its applications to modeling and control publication-title: IEEE Transactions on Systems, Man, and Cybernetics doi: 10.1109/TSMC.1985.6313399 – ident: 10.1016/j.cageo.2012.02.004_bib14 – volume: 22 start-page: 171 issue: 2 year: 1998 ident: 10.1016/j.cageo.2012.02.004_bib53 article-title: Toward global optimization of neural networks: a comparison of the genetic algorithm and backpropagation publication-title: Decision Support Systems doi: 10.1016/S0167-9236(97)00040-7 – volume: 42 start-page: 309 issue: 3 year: 2010 ident: 10.1016/j.cageo.2012.02.004_bib8 article-title: Ore grade prediction using a genetic algorithm and clustering based ensemble neural network model publication-title: Mathematical Geosciences doi: 10.1007/s11004-010-9264-y – ident: 10.1016/j.cageo.2012.02.004_bib46 doi: 10.1109/ICNN.1995.487513 – volume: 13 start-page: 91 year: 2009 ident: 10.1016/j.cageo.2012.02.004_bib43 article-title: A hybrid method for grade estimation using genetic algorithm and neural networks publication-title: Computational Geosciences doi: 10.1007/s10596-008-9107-9 – volume: 20 start-page: 25 issue: 1 year: 2011 ident: 10.1016/j.cageo.2012.02.004_bib61 article-title: Application of a modular feedforward neural network for grade estimation publication-title: Natural Resources Research doi: 10.1007/s11053-011-9135-3 – volume: 27 start-page: 679 year: 1999 ident: 10.1016/j.cageo.2012.02.004_bib19 article-title: Comparing backpropagation with a genetic algorithm for neural network training publication-title: Omega doi: 10.1016/S0305-0483(99)00027-4 – volume: 34 start-page: 1 issue: 1 year: 2002 ident: 10.1016/j.cageo.2012.02.004_bib57 article-title: Conditional simulation of complex geological structures using multiple-point geostatistics publication-title: Mathematical Geology doi: 10.1023/A:1014009426274 – volume: 93 year: 1998 ident: 10.1016/j.cageo.2012.02.004_bib21 – volume: 34 start-page: 770 year: 1999 ident: 10.1016/j.cageo.2012.02.004_bib23 article-title: Factors controlling copper solubility and chalcopyrite deposition in the Sungun porphyry copper deposit, Iran publication-title: Mineralium Deposita doi: 10.1007/s001260050237 – ident: 10.1016/j.cageo.2012.02.004_bib29 – volume: 28 start-page: 1017 issue: 8 year: 1996 ident: 10.1016/j.cageo.2012.02.004_bib55 article-title: Application of a feed forward neural network in the search for Kuroko deposits in the Hokuroku district, Japan publication-title: Mathematical Geology doi: 10.1007/BF02068587 – volume: 38 start-page: 465 issue: 4 year: 2006 ident: 10.1016/j.cageo.2012.02.004_bib54 article-title: Typing mineral deposits using their associated rocks and grades and tonnages in a probabilistic neural network publication-title: Mathematical Geology doi: 10.1007/s11004-005-9023-7 |
| SSID | ssj0002285 |
| Score | 2.4845288 |
| Snippet | The grade estimation is a quite important and money/time-consuming stage in a mine project, which is considered as a challenge for the geologists and mining... |
| SourceID | pubmedcentral proquest pubmed crossref fao elsevier |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 18 |
| SubjectTerms | Adaptive systems algorithms Artificial neural networks case studies Coactive neuro-fuzzy inference system (CANFIS) computers Fuzzy logic Genetic algorithm Genetic algorithms Grade estimation Iran Learning theory Mathematical models mineralogy mining momentum Networks Neural networks Parallel optimization |
| Title | A hybrid neural networks-fuzzy logic-genetic algorithm for grade estimation |
| URI | https://dx.doi.org/10.1016/j.cageo.2012.02.004 https://www.ncbi.nlm.nih.gov/pubmed/25540468 https://www.proquest.com/docview/1642276989 https://www.proquest.com/docview/1859697294 https://www.proquest.com/docview/2000073308 https://pubmed.ncbi.nlm.nih.gov/PMC4268588 |
| Volume | 42 |
| WOSCitedRecordID | wos000303291400003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1873-7803 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002285 issn: 0098-3004 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLZoBxIviOs2LlOQ2FMJSpyL7ccKWgZUBYlW6pvlJnYvrGlJW7T213NsJ70wVo0HpCqqEidO_H059nGOv4PQm4iSlGFFXYlD4uqll65I48BNAj9KFXjQWJmFwi3SbtNej30rknHOTToBkmX06orN_ivUsA_A1ktn_wHuzUVhB_wH0GELsMP2VsDXa8OVXoZV01KVAEBmA73nrlqu16uasXUunC2NVOvlYJqPFsOJCTcc5CKVNa27MdkCVsoYFOkf5oYsA1mIYG5DEDtiOIEusT-yYb_jyZZ3F3It8h9Dmz6qVs9TqefEdyccdORGGd5XGlFGXS3UtWtEQ1ybvfMBCbJjDQvLavtVe-SaxbaTB2PwxgdmMaaem9UaquG2gyo_yre_8ma31eKdRq9zHjRnP12dPEx_ZD8PPlggK-gIk4jRKjqqf2r0Pm86ZYxpVMqn6nsvBahMqN-1um8apFSUmP7NFfkzonZniNJ5iB4UvoVTt5x4hO7I7DG699Hkbl49QV_qjmWGY5nh7DPD2WOGs2GGA8xwDDOcLTOeom6z0Xl_4Ra5NFwBFnbhpokniGKSRX14ByMFrYQD4UcwXFWMpNgTgY8TvfALM5ooQWQSJ8JXLPEF9sIweIaq2TSTJ8hhcB0fqyjB4MorCVbAU0qkOO2zuO8H9BThsvF4UgjN63wnl7yMKBxz0-Jctzj34OeFp-jt5qSZ1Vk5XDwuUeEF3e0QkAOvDp94AhhyMYAulHe_Yy2wqIfpRN_36xJYDjZWfzgTmZwu59wHJx0TnWr1QBkasZhB64U3l8EmcCAIPKjr2BJm87Dg2odeGMMRskelTQGtA79_JBsNjR48DLJpROnzW9T7At3fvtIvUXWRL-UrdDf5tRjN8zNUIT16Vrw6vwFGMtNR |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+hybrid+neural+networks-fuzzy+logic-genetic+algorithm+for+grade+estimation&rft.jtitle=Computers+%26+geosciences&rft.au=Tahmasebi%2C+Pejman&rft.au=Hezarkhani%2C+Ardeshir&rft.date=2012-05-01&rft.issn=0098-3004&rft.volume=42+p.18-27&rft.spage=18&rft.epage=27&rft_id=info:doi/10.1016%2Fj.cageo.2012.02.004&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0098-3004&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0098-3004&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0098-3004&client=summon |