A hybrid neural networks-fuzzy logic-genetic algorithm for grade estimation

The grade estimation is a quite important and money/time-consuming stage in a mine project, which is considered as a challenge for the geologists and mining engineers due to the structural complexities in mineral ore deposits. To overcome this problem, several artificial intelligence techniques such...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computers & geosciences Jg. 42; S. 18 - 27
Hauptverfasser: Tahmasebi, Pejman, Hezarkhani, Ardeshir
Format: Journal Article
Sprache:Englisch
Veröffentlicht: United States Elsevier Ltd 01.05.2012
Pergamon Press
Schlagworte:
ISSN:0098-3004, 1873-7803
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract The grade estimation is a quite important and money/time-consuming stage in a mine project, which is considered as a challenge for the geologists and mining engineers due to the structural complexities in mineral ore deposits. To overcome this problem, several artificial intelligence techniques such as Artificial Neural Networks (ANN) and Fuzzy Logic (FL) have recently been employed with various architectures and properties. However, due to the constraints of both methods, they yield the desired results only under the specific circumstances. As an example, one major problem in FL is the difficulty of constructing the membership functions (MFs).Other problems such as architecture and local minima could also be located in ANN designing. Therefore, a new methodology is presented in this paper for grade estimation. This method which is based on ANN and FL is called “Coactive Neuro-Fuzzy Inference System” (CANFIS) which combines two approaches, ANN and FL. The combination of these two artificial intelligence approaches is achieved via the verbal and numerical power of intelligent systems. To improve the performance of this system, a Genetic Algorithm (GA) – as a well-known technique to solve the complex optimization problems – is also employed to optimize the network parameters including learning rate, momentum of the network and the number of MFs for each input. A comparison of these techniques (ANN, Adaptive Neuro-Fuzzy Inference System or ANFIS) with this new method (CANFIS–GA) is also carried out through a case study in Sungun copper deposit, located in East-Azerbaijan, Iran. The results show that CANFIS–GA could be a faster and more accurate alternative to the existing time-consuming methodologies for ore grade estimation and that is, therefore, suggested to be applied for grade estimation in similar problems. [Display omitted] ► We developed and applied a hybrid neural network for grade estimation. ► The new method is composed of ANN, FL and GA. ► This method removes the limitation of hybrid neural-fuzzy networks. ► The proposed hybrid network has less user-dependent parameters.
AbstractList The grade estimation is a quite important and money/time-consuming stage in a mine project, which is considered as a challenge for the geologists and mining engineers due to the structural complexities in mineral ore deposits. To overcome this problem, several artificial intelligence techniques such as Artificial Neural Networks (ANN) and Fuzzy Logic (FL) have recently been employed with various architectures and properties. However, due to the constraints of both methods, they yield the desired results only under the specific circumstances. As an example, one major problem in FL is the difficulty of constructing the membership functions (MFs).Other problems such as architecture and local minima could also be located in ANN designing. Therefore, a new methodology is presented in this paper for grade estimation. This method which is based on ANN and FL is called "Coactive Neuro-Fuzzy Inference System" (CANFIS) which combines two approaches, ANN and FL. The combination of these two artificial intelligence approaches is achieved via the verbal and numerical power of intelligent systems. To improve the performance of this system, a Genetic Algorithm (GA) - as a well-known technique to solve the complex optimization problems - is also employed to optimize the network parameters including learning rate, momentum of the network and the number of MFs for each input. A comparison of these techniques (ANN, Adaptive Neuro-Fuzzy Inference System or ANFIS) with this new method (CANFIS-GA) is also carried out through a case study in Sungun copper deposit, located in East-Azerbaijan, Iran. The results show that CANFIS-GA could be a faster and more accurate alternative to the existing time-consuming methodologies for ore grade estimation and that is, therefore, suggested to be applied for grade estimation in similar problems.
The grade estimation is a quite important and money/time-consuming stage in a mine project, which is considered as a challenge for the geologists and mining engineers due to the structural complexities in mineral ore deposits. To overcome this problem, several artificial intelligence techniques such as Artificial Neural Networks (ANN) and Fuzzy Logic (FL) have recently been employed with various architectures and properties. However, due to the constraints of both methods, they yield the desired results only under the specific circumstances. As an example, one major problem in FL is the difficulty of constructing the membership functions (MFs).Other problems such as architecture and local minima could also be located in ANN designing. Therefore, a new methodology is presented in this paper for grade estimation. This method which is based on ANN and FL is called “Coactive Neuro-Fuzzy Inference System” (CANFIS) which combines two approaches, ANN and FL. The combination of these two artificial intelligence approaches is achieved via the verbal and numerical power of intelligent systems. To improve the performance of this system, a Genetic Algorithm (GA) – as a well-known technique to solve the complex optimization problems – is also employed to optimize the network parameters including learning rate, momentum of the network and the number of MFs for each input. A comparison of these techniques (ANN, Adaptive Neuro-Fuzzy Inference System or ANFIS) with this new method (CANFIS–GA) is also carried out through a case study in Sungun copper deposit, located in East-Azerbaijan, Iran. The results show that CANFIS–GA could be a faster and more accurate alternative to the existing time-consuming methodologies for ore grade estimation and that is, therefore, suggested to be applied for grade estimation in similar problems. [Display omitted] ► We developed and applied a hybrid neural network for grade estimation. ► The new method is composed of ANN, FL and GA. ► This method removes the limitation of hybrid neural-fuzzy networks. ► The proposed hybrid network has less user-dependent parameters.
The grade estimation is a quite important and money/time-consuming stage in a mine project, which is considered as a challenge for the geologists and mining engineers due to the structural complexities in mineral ore deposits. To overcome this problem, several artificial intelligence techniques such as Artificial Neural Networks (ANN) and Fuzzy Logic (FL) have recently been employed with various architectures and properties. However, due to the constraints of both methods, they yield the desired results only under the specific circumstances. As an example, one major problem in FL is the difficulty of constructing the membership functions (MFs).Other problems such as architecture and local minima could also be located in ANN designing. Therefore, a new methodology is presented in this paper for grade estimation. This method which is based on ANN and FL is called "Coactive Neuro-Fuzzy Inference System" (CANFIS) which combines two approaches, ANN and FL. The combination of these two artificial intelligence approaches is achieved via the verbal and numerical power of intelligent systems. To improve the performance of this system, a Genetic Algorithm (GA) - as a well-known technique to solve the complex optimization problems - is also employed to optimize the network parameters including learning rate, momentum of the network and the number of MFs for each input. A comparison of these techniques (ANN, Adaptive Neuro-Fuzzy Inference System or ANFIS) with this new method (CANFIS-GA) is also carried out through a case study in Sungun copper deposit, located in East-Azerbaijan, Iran. The results show that CANFIS-GA could be a faster and more accurate alternative to the existing time-consuming methodologies for ore grade estimation and that is, therefore, suggested to be applied for grade estimation in similar problems.The grade estimation is a quite important and money/time-consuming stage in a mine project, which is considered as a challenge for the geologists and mining engineers due to the structural complexities in mineral ore deposits. To overcome this problem, several artificial intelligence techniques such as Artificial Neural Networks (ANN) and Fuzzy Logic (FL) have recently been employed with various architectures and properties. However, due to the constraints of both methods, they yield the desired results only under the specific circumstances. As an example, one major problem in FL is the difficulty of constructing the membership functions (MFs).Other problems such as architecture and local minima could also be located in ANN designing. Therefore, a new methodology is presented in this paper for grade estimation. This method which is based on ANN and FL is called "Coactive Neuro-Fuzzy Inference System" (CANFIS) which combines two approaches, ANN and FL. The combination of these two artificial intelligence approaches is achieved via the verbal and numerical power of intelligent systems. To improve the performance of this system, a Genetic Algorithm (GA) - as a well-known technique to solve the complex optimization problems - is also employed to optimize the network parameters including learning rate, momentum of the network and the number of MFs for each input. A comparison of these techniques (ANN, Adaptive Neuro-Fuzzy Inference System or ANFIS) with this new method (CANFIS-GA) is also carried out through a case study in Sungun copper deposit, located in East-Azerbaijan, Iran. The results show that CANFIS-GA could be a faster and more accurate alternative to the existing time-consuming methodologies for ore grade estimation and that is, therefore, suggested to be applied for grade estimation in similar problems.
Author Hezarkhani, Ardeshir
Tahmasebi, Pejman
AuthorAffiliation Department of Mining, Metallurgy and Petroleum Engineering, Amirkabir University of Technology (Tehran Polytechnic), Hafez Ave. No. 24, Hafez ave., Tehran, Iran
AuthorAffiliation_xml – name: Department of Mining, Metallurgy and Petroleum Engineering, Amirkabir University of Technology (Tehran Polytechnic), Hafez Ave. No. 24, Hafez ave., Tehran, Iran
Author_xml – sequence: 1
  givenname: Pejman
  surname: Tahmasebi
  fullname: Tahmasebi, Pejman
  email: pejman@aut.ac.ir
– sequence: 2
  givenname: Ardeshir
  surname: Hezarkhani
  fullname: Hezarkhani, Ardeshir
  email: Ardehez@aut.ac.ir
BackLink https://www.ncbi.nlm.nih.gov/pubmed/25540468$$D View this record in MEDLINE/PubMed
BookMark eNqFkU1vEzEQhq2qqE0DvwAJ9shlw9hefx1Aqiq-RCUOtGfL8dobh8262LtF6a_HadoKOBBppJHGz4zfmfcMHQ9xcAi9xLDAgPnb9cKazsUFAUwWUAKaIzTDUtBaSKDHaAagZE1L_RSd5bwGAEIkO0GnhLEGGi5n6Ot5tdouU2irwU3J9CWNv2L6kWs_3d1tqz52wdadK-VgK9N3MYVxtal8TFWXTOsql8ewMWOIw3P0zJs-uxcPeY6uP364uvhcX3779OXi_LI2nMqxbi0Y4ZVTbMlazzwRjFCDmVTUK9ESMBQTy70VREnrjXCWW4O9stgQaBo6R-_3c2-m5ca11g1jUa5vUtGRtjqaoP9-GcJKd_FWN4RLJmUZ8OZhQIo_p7KA3oRsXd-bwcUpa1IuBYJSOIxiyRRXRWlzGOUNIYKrsuccvfpzgyfpj74UgO4Bm2LOyfknBIPeua_X-t59vXNfQwnYKVD_dNkw3ltTzhD6A72v973eRG26FLK-_l4AXk7BqaA7Te_2hCve3gaXdLbBDda1ITk76jaG__7wG4d_1Xc
CitedBy_id crossref_primary_10_1080_19942060_2018_1448896
crossref_primary_10_1007_s11004_015_9597_7
crossref_primary_10_1016_j_envres_2015_11_024
crossref_primary_10_1016_j_enbuild_2016_07_054
crossref_primary_10_1007_s42452_021_04899_5
crossref_primary_10_1007_s00521_020_05553_8
crossref_primary_10_3390_min10100847
crossref_primary_10_1007_s10230_013_0247_3
crossref_primary_10_1016_j_apgeochem_2020_104679
crossref_primary_10_3390_min12101296
crossref_primary_10_3390_s20061669
crossref_primary_10_1007_s00170_019_03354_5
crossref_primary_10_1016_j_surg_2020_08_038
crossref_primary_10_1007_s40200_021_00843_x
crossref_primary_10_1515_epoly_2016_0235
crossref_primary_10_1016_j_physrep_2021_09_003
crossref_primary_10_1016_j_scitotenv_2023_169113
crossref_primary_10_1007_s12145_021_00667_6
crossref_primary_10_1007_s13369_017_2589_9
crossref_primary_10_1515_acss_2017_0014
crossref_primary_10_1016_j_agrformet_2018_12_015
crossref_primary_10_1088_1755_1315_212_1_012067
crossref_primary_10_1007_s12517_020_05644_9
crossref_primary_10_1080_08839514_2021_1922847
crossref_primary_10_3390_en16237773
crossref_primary_10_3390_pr10071378
crossref_primary_10_1371_journal_pone_0323913
crossref_primary_10_1016_j_scitotenv_2019_134656
crossref_primary_10_3390_app13137622
crossref_primary_10_1007_s00170_017_0151_2
crossref_primary_10_1016_j_jafrearsci_2022_104662
crossref_primary_10_3390_min11101059
crossref_primary_10_1007_s00500_023_09551_5
crossref_primary_10_1007_s11004_021_09967_5
crossref_primary_10_1520_SSMS20180031
crossref_primary_10_1016_j_ijmst_2017_03_004
crossref_primary_10_1080_17442508_2022_2070019
crossref_primary_10_1007_s00521_019_04101_3
crossref_primary_10_1007_s12517_021_06833_w
crossref_primary_10_1016_j_earscirev_2024_104941
crossref_primary_10_2166_wcc_2024_143
crossref_primary_10_1007_s11600_022_00948_8
crossref_primary_10_1007_s13369_021_06487_6
crossref_primary_10_3390_en12163067
crossref_primary_10_1088_1755_1315_421_4_042015
crossref_primary_10_1016_j_geoen_2023_212387
crossref_primary_10_1007_s00366_018_00694_w
crossref_primary_10_3389_fenvs_2021_748913
crossref_primary_10_3390_app9194159
crossref_primary_10_1088_1742_6596_1601_3_032056
crossref_primary_10_3390_su11030818
crossref_primary_10_1016_j_petrol_2020_107291
crossref_primary_10_1155_2022_2055655
crossref_primary_10_1177_25726668241281875
crossref_primary_10_1088_1757_899X_734_1_012124
crossref_primary_10_1016_j_jenvman_2019_06_102
crossref_primary_10_1007_s12517_020_05607_0
crossref_primary_10_1007_s12559_021_09859_0
crossref_primary_10_1061__ASCE_CO_1943_7862_0002250
crossref_primary_10_1109_JIOT_2025_3583582
crossref_primary_10_1016_j_dt_2017_01_001
crossref_primary_10_1108_IJICC_06_2016_0021
crossref_primary_10_3390_met13030490
crossref_primary_10_1016_j_jappgeo_2022_104574
crossref_primary_10_1007_s11694_024_02487_w
crossref_primary_10_2118_204224_PA
crossref_primary_10_1016_j_chemer_2021_125824
crossref_primary_10_1016_j_physa_2016_08_031
crossref_primary_10_1007_s00521_018_3344_1
crossref_primary_10_1007_s12517_016_2384_z
crossref_primary_10_1155_2020_8851065
crossref_primary_10_1016_j_petlm_2022_03_003
crossref_primary_10_1016_j_gexplo_2016_02_001
crossref_primary_10_1016_j_jclepro_2017_10_303
crossref_primary_10_1016_j_cageo_2019_05_005
crossref_primary_10_3390_min13070982
crossref_primary_10_1080_19475705_2017_1327464
crossref_primary_10_1016_j_epsr_2022_107867
crossref_primary_10_1007_s11771_017_3616_4
crossref_primary_10_1051_matecconf_201815401077
crossref_primary_10_1016_j_petlm_2017_09_009
crossref_primary_10_3390_en14144079
crossref_primary_10_3390_rs15010042
crossref_primary_10_1007_s10586_018_2279_8
crossref_primary_10_3389_fnins_2022_867664
crossref_primary_10_3390_su15097087
crossref_primary_10_1016_j_petrol_2021_109029
crossref_primary_10_1016_j_mineng_2015_09_020
crossref_primary_10_1016_j_geogeo_2022_100038
crossref_primary_10_1007_s00521_017_2850_x
crossref_primary_10_3390_ma14216373
crossref_primary_10_1016_j_oceaneng_2021_108861
crossref_primary_10_1038_s41598_025_96371_2
crossref_primary_10_1371_journal_pone_0272790
crossref_primary_10_1016_j_jss_2017_07_017
crossref_primary_10_3103_S1060992X21030085
crossref_primary_10_1007_s11069_018_3449_y
crossref_primary_10_1007_s00521_020_05194_x
crossref_primary_10_1002_joc_8792
crossref_primary_10_1007_s12517_017_2868_5
crossref_primary_10_1007_s00500_020_05487_2
crossref_primary_10_1007_s13201_016_0508_y
crossref_primary_10_1080_14498596_2018_1505564
crossref_primary_10_1016_j_cageo_2021_104981
crossref_primary_10_1002_cplx_21814
crossref_primary_10_1007_s12517_014_1732_0
crossref_primary_10_1016_j_jcrc_2017_06_011
crossref_primary_10_1016_j_mineng_2025_109741
crossref_primary_10_1038_s41598_021_92082_6
crossref_primary_10_3390_atmos12010009
crossref_primary_10_1016_j_procs_2018_01_035
crossref_primary_10_1007_s12517_020_05375_x
crossref_primary_10_1007_s42461_025_01270_9
crossref_primary_10_1016_j_jappgeo_2020_104107
crossref_primary_10_1007_s13369_018_3423_8
crossref_primary_10_1016_j_envsoft_2015_07_007
crossref_primary_10_1007_s13369_024_09556_8
crossref_primary_10_1097_DCR_0000000000003636
crossref_primary_10_1016_j_procs_2021_06_028
crossref_primary_10_1007_s12517_019_4800_7
crossref_primary_10_1080_24701556_2019_1653321
crossref_primary_10_1155_2014_732831
crossref_primary_10_1016_j_petrol_2021_109335
crossref_primary_10_1088_1742_6596_1276_1_012025
crossref_primary_10_1109_ACCESS_2019_2951605
crossref_primary_10_3389_fenrg_2020_612165
crossref_primary_10_1155_2018_8519695
crossref_primary_10_1016_j_advwatres_2020_103619
crossref_primary_10_32604_cmes_2024_048071
crossref_primary_10_1007_s41066_018_0133_2
crossref_primary_10_1016_j_jher_2017_11_004
crossref_primary_10_32604_cmc_2021_016988
crossref_primary_10_1080_15567036_2018_1486912
crossref_primary_10_3390_su12218932
crossref_primary_10_1016_j_eswa_2022_119487
crossref_primary_10_3390_su11216083
crossref_primary_10_1007_s42452_020_3103_7
crossref_primary_10_3390_info11030167
crossref_primary_10_3390_en15196909
crossref_primary_10_1007_s10973_022_11896_2
crossref_primary_10_3390_ijgi11070371
Cites_doi 10.1023/B:MATG.0000041180.34176.65
10.1007/s11004-006-9066-4
10.1007/s11004-007-9120-x
10.1016/S0098-3004(02)00078-X
10.1016/S0020-7373(75)80002-2
10.1016/j.enconman.2007.06.015
10.2113/gsecongeo.65.4.373
10.1023/A:1011084812324
10.1023/A:1015520204066
10.1109/23.589532
10.1007/BF00890297
10.1023/A:1025180005454
10.1007/BF00890298
10.1016/j.cageo.2005.03.011
10.1016/0098-3004(93)90082-G
10.1016/j.asoc.2007.03.010
10.1007/978-1-4471-1599-1_28
10.1109/21.256541
10.1016/j.cageo.2005.12.007
10.1016/S0925-2312(98)00090-3
10.1023/A:1021677510649
10.1016/S0893-6080(99)00067-2
10.1109/ICNN.1993.298557
10.1016/S0019-9958(65)90241-X
10.1016/0893-6080(89)90020-8
10.1109/IJCNN.1999.830780
10.1007/BF02823145
10.1016/0165-0114(94)00283-D
10.1007/s11004-006-9042-z
10.1007/BF02769634
10.1007/s10596-012-9287-1
10.1109/TSMC.1985.6313399
10.1016/S0167-9236(97)00040-7
10.1007/s11004-010-9264-y
10.1109/ICNN.1995.487513
10.1007/s10596-008-9107-9
10.1007/s11053-011-9135-3
10.1016/S0305-0483(99)00027-4
10.1023/A:1014009426274
10.1007/s001260050237
10.1007/BF02068587
10.1007/s11004-005-9023-7
ContentType Journal Article
Copyright 2012
Crown Copyright © 2012 Published by Elsevier Ltd. on behalf of International Association for Mathematical Geology. 2012
Copyright_xml – notice: 2012
– notice: Crown Copyright © 2012 Published by Elsevier Ltd. on behalf of International Association for Mathematical Geology. 2012
DBID 6I.
AAFTH
FBQ
AAYXX
CITATION
NPM
7SC
8FD
FR3
H8D
JQ2
KR7
L7M
L~C
L~D
7X8
7S9
L.6
5PM
DOI 10.1016/j.cageo.2012.02.004
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
AGRIS
CrossRef
PubMed
Computer and Information Systems Abstracts
Technology Research Database
Engineering Research Database
Aerospace Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
Aerospace Database
Civil Engineering Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList Aerospace Database


MEDLINE - Academic
AGRICOLA
PubMed

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Geology
EISSN 1873-7803
EndPage 27
ExternalDocumentID PMC4268588
25540468
10_1016_j_cageo_2012_02_004
US201600063738
S0098300412000398
Genre Journal Article
GeographicLocations Iran
GeographicLocations_xml – name: Iran
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1RT
1~.
1~5
29F
4.4
457
4G.
5GY
5VS
6I.
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAFTH
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABFNM
ABMAC
ABQEM
ABQYD
ABXDB
ABYKQ
ACDAQ
ACGFS
ACLVX
ACNNM
ACRLP
ACSBN
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
AEBSH
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
ATOGT
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
GBOLZ
HLZ
HMA
HVGLF
HZ~
IHE
IMUCA
J1W
KOM
LG9
LY3
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SBC
SDF
SDG
SDP
SEP
SES
SEW
SPC
SPCBC
SSE
SSV
SSZ
T5K
TN5
WUQ
ZCA
ZMT
~02
~G-
ABPIF
ABPTK
FBQ
9DU
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
ADXHL
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
BNPGV
NPM
SSH
7SC
8FD
FR3
H8D
JQ2
KR7
L7M
L~C
L~D
7X8
7S9
L.6
5PM
ID FETCH-LOGICAL-a638t-dc0a7f9e95b5df5f27523a15893f97d20a312c6fc7298cfa7ec6ca1f9c1a20443
ISICitedReferencesCount 186
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000303291400003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0098-3004
IngestDate Tue Sep 30 17:00:40 EDT 2025
Sun Sep 28 09:01:00 EDT 2025
Sat Sep 27 22:40:46 EDT 2025
Sun Nov 09 14:42:06 EST 2025
Thu Apr 03 07:09:59 EDT 2025
Sat Nov 29 03:42:07 EST 2025
Tue Nov 18 21:43:24 EST 2025
Wed Dec 27 19:20:24 EST 2023
Fri Feb 23 02:34:01 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Coactive neuro-fuzzy inference system (CANFIS)
Genetic algorithm
Parallel optimization
Grade estimation
Artificial neural networks
Language English
License http://creativecommons.org/licenses/by-nc-nd/3.0
https://www.elsevier.com/tdm/userlicense/1.0
Open Access under CC BY-NC-ND 3.0 license
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-a638t-dc0a7f9e95b5df5f27523a15893f97d20a312c6fc7298cfa7ec6ca1f9c1a20443
Notes http://dx.doi.org/10.1016/j.cageo.2012.02.004
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://pubmed.ncbi.nlm.nih.gov/PMC4268588
PMID 25540468
PQID 1642276989
PQPubID 23500
PageCount 10
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_4268588
proquest_miscellaneous_2000073308
proquest_miscellaneous_1859697294
proquest_miscellaneous_1642276989
pubmed_primary_25540468
crossref_primary_10_1016_j_cageo_2012_02_004
crossref_citationtrail_10_1016_j_cageo_2012_02_004
fao_agris_US201600063738
elsevier_sciencedirect_doi_10_1016_j_cageo_2012_02_004
PublicationCentury 2000
PublicationDate 2012-05-01
PublicationDateYYYYMMDD 2012-05-01
PublicationDate_xml – month: 05
  year: 2012
  text: 2012-05-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Computers & geosciences
PublicationTitleAlternate Comput Geosci
PublicationYear 2012
Publisher Elsevier Ltd
Pergamon Press
Publisher_xml – name: Elsevier Ltd
– name: Pergamon Press
References Lowell, Guilbert (bib41) 1970; 65
Galatakis, Theodoridis, Kouridou (bib16) 2002
Mamdani, Assilian (bib44) 1975; 7
Yama, Lineberry (bib72) 1999; 51
Yager, Zadeh (bib71) 1994
Lacassie, Solar, Roser, Hervé (bib40) 2006; 38
Tahmasebi, P., Hezarkhani, A. Multiple geostatistical simulation. In: Geostatistics, InTech Publication (in press).
Hezarkhani (bib20) 2002; 13
Porwal, Carranza, Hale (bib48) 2004; 36
Weller, Corcoran, Harris, Ware (bib67) 2005; 31
Weller, Harris, Ware (bib68) 2007; 39
Kapageridis, I.K., Denby, B., 1998. Neural network modeling for ore grade spatial variability. Prpceedings of the 8th International Conference on Artificial Neural Networks (ICANN), Skovde, Sweeden, pp. 209–214.
Tahmasebi, Hezarkhani (bib58) 2009; IAMG09
Sexton, Dorsey, Johnson (bib53) 1998; 22
Tutmez, B., 2005. Reserve estimation using fuzzy set theory. Unpublished Ph.D dissertation, Hacettepe University, Ankara, pp. 168.
Ghezelayagh, Lee (bib17) 1999; 2
Demuth, Beale (bib13) 2002
Rendu, J.M., 1979. Kriging, logarithmic Kriging, and conditional expectation: comparison of theory with actual results, Proc. 16th APCOM Symposium. Tucson, Arizona, pp. 199–212.
Jagielska, Matthews, Whitfort (bib28) 1999; 24
Goldberg (bib18) 1989
Hezarkhani, A., Williams, J.A.E., Gammons, C., 1997. Copper solubility and deposition conditions in the potassic and phyllic alteration zones, at the Sungun porphyry copper deposit, Iran. Geological Association of Canada and Mineralogical Association of Canada (GAC–MAC), Annual Meeting, Ottawa pp. 65–72.
Singer, Kouda (bib55) 1996; 28
Bardossy, Bogardi, Kelly (bib3) 1990; 22
Koike, Matsuda, Gu (bib38) 2001; 33
Chaturvedi, D.K., Satsangi, P.S., Kalra, P.K., 1996. Effect of different mappings and normalization of neural network models. Ninth National Power Systems Conference, Indian institute of Technology, Kanpur 1, pp. 377–386.
Samanta, Bandopadhyay, Ganguli (bib52) 2004; 11
Ying, Pan (bib73) 2008; 49
Jang, Sun, Mizutani (bib31) 1997
Journel, Huijbregts (bib32) 1978
Koike, Matsuda (bib37) 2003; 12
Pham (bib47) 1997; 29
Singer (bib54) 2006; 38
Sola, Sevilla (bib56) 1997; 44
Deb (bib12) 1999; 24
Ishigami (bib27) 1995; 71
Tahmasebi, Hezarkhani (bib60) 2010 b; 4
Holland (bib25) 1975
Etminan, H., 1977. A porphyry copper–molybdenum deposit near the Sungun village. Internal Report, Geological Survey of Iran, p. 240.
Koike, Matsuda, Suzuki, Ohmi (bib39) 2002; 11
Cheng, Agterberg (bib10) 1999; 8
Mizutani, E., Jang, J.S.R., 1995. Coactive neural fuzzy modeling. In proceedings of the International Conference on Neural Network, pp. 760–765.
Ke, J., 2002. Neural network modeling of placer ore grade spatial variability. Unpublished Ph.D Dissertation, University of Alaska Fairbanks, pp. 251.
Bardossy, Szabo, Varga (bib5) 2003; 1
Kim, Kasabov (bib36) 1999; 12
Weller, Harris, Ware, Jarvis (bib69) 2006; 32
Hornik, Stinchcombe, White (bib26) 1989; 2
Asadi, Tahmasebi (bib1) 2011
Denby, B., Burnett, C., 1993. A neural network based tool for grade estimation, 24th International Symposium on the Application of Computer and Operation Research in the Mineral Industries (APCOM), Montreal, Quebec.
Hezarkhani, Williams, Gammons (bib23) 1999; 34
Chatterjee, Bandopadhyay, Machuca (bib8) 2010; 42
Ross (bib51) 2006
Wu, Zhou (bib70) 1993; 19
Zadeh (bib74) 1965; 8
Kapageridis, Denby, Hunter (bib34) 1999; 6
Hezarkhani, Williams (bib21) 1998; 93
Bazin, D., Hübner, H., 1969. Copper deposits in Iran , Report No 13. Ministry of Economy, Geological Survey of Iran. 365 pp.
Strebelle (bib57) 2002; 34
Rice (bib50) 2006
Tahmasebi, Hezarkhani (bib61) 2011; 20
Buragohain, Mahanta (bib7) 2008; 8
Clarici, Owen, Durucan, Ravencroft (bib11) 1993
Jang (bib30) 1993; 23
Gupta, Sexton (bib19) 1999; 27
Tahmasebi, P., Hezarkhani, A., Sahimi, M. Multiple-Point Geostatistical Modeling based on the Cross-Correlation Functions, Computational Geosciences (in press).
Jang, J.S.R., 1992. Neuro-fuzzy modeling: architecture, analyses and applications. Unpublished Ph.D Dissertation, Department of Electrical Engineering and Computer Science, University of California, Berkeley, California.
Mahmoudabadi, Izadi, Menhaj (bib43) 2009; 13
McInerney, M., Dhawan, A.P., 1993. Use of genetic algorithms with backpropagation in training of feedforward neural networks. In: Proceedings of the IEEE International Conference on Neural Networks, pp. 203–208.
Takagi, Sugeno (bib64) 1985; 15
Bardossy, Bogardi, Kelly (bib2) 1990; 22
Bardossy, Fodor (bib4) 2005; 2
Tahmasebi, Hezarkhani (bib59) 2010; 4
Luo, Dimitrakopoulos (bib42) 2003; 29
Tutmez, Tercan, Kaymak (bib66) 2007; 39
10.1016/j.cageo.2012.02.004_bib6
Singer (10.1016/j.cageo.2012.02.004_bib55) 1996; 28
Koike (10.1016/j.cageo.2012.02.004_bib37) 2003; 12
Kapageridis (10.1016/j.cageo.2012.02.004_bib34) 1999; 6
Jagielska (10.1016/j.cageo.2012.02.004_bib28) 1999; 24
Wu (10.1016/j.cageo.2012.02.004_bib70) 1993; 19
Bardossy (10.1016/j.cageo.2012.02.004_bib4) 2005; 2
Weller (10.1016/j.cageo.2012.02.004_bib67) 2005; 31
Pham (10.1016/j.cageo.2012.02.004_bib47) 1997; 29
Porwal (10.1016/j.cageo.2012.02.004_bib48) 2004; 36
Hornik (10.1016/j.cageo.2012.02.004_bib26) 1989; 2
10.1016/j.cageo.2012.02.004_bib33
Tahmasebi (10.1016/j.cageo.2012.02.004_bib61) 2011; 20
10.1016/j.cageo.2012.02.004_bib35
Gupta (10.1016/j.cageo.2012.02.004_bib19) 1999; 27
Deb (10.1016/j.cageo.2012.02.004_bib12) 1999; 24
Luo (10.1016/j.cageo.2012.02.004_bib42) 2003; 29
Ghezelayagh (10.1016/j.cageo.2012.02.004_bib17) 1999; 2
Galatakis (10.1016/j.cageo.2012.02.004_bib16) 2002
Cheng (10.1016/j.cageo.2012.02.004_bib10) 1999; 8
Yama (10.1016/j.cageo.2012.02.004_bib72) 1999; 51
Tahmasebi (10.1016/j.cageo.2012.02.004_bib59) 2010; 4
Ying (10.1016/j.cageo.2012.02.004_bib73) 2008; 49
10.1016/j.cageo.2012.02.004_bib62
10.1016/j.cageo.2012.02.004_bib63
Bardossy (10.1016/j.cageo.2012.02.004_bib2) 1990; 22
10.1016/j.cageo.2012.02.004_bib65
Hezarkhani (10.1016/j.cageo.2012.02.004_bib23) 1999; 34
Yager (10.1016/j.cageo.2012.02.004_bib71) 1994
Sola (10.1016/j.cageo.2012.02.004_bib56) 1997; 44
Bardossy (10.1016/j.cageo.2012.02.004_bib5) 2003; 1
Chatterjee (10.1016/j.cageo.2012.02.004_bib8) 2010; 42
10.1016/j.cageo.2012.02.004_bib29
10.1016/j.cageo.2012.02.004_bib22
10.1016/j.cageo.2012.02.004_bib9
Koike (10.1016/j.cageo.2012.02.004_bib39) 2002; 11
Tahmasebi (10.1016/j.cageo.2012.02.004_bib58) 2009; IAMG09
Bardossy (10.1016/j.cageo.2012.02.004_bib3) 1990; 22
Koike (10.1016/j.cageo.2012.02.004_bib38) 2001; 33
Tahmasebi (10.1016/j.cageo.2012.02.004_bib60) 2010; 4
Weller (10.1016/j.cageo.2012.02.004_bib69) 2006; 32
Rice (10.1016/j.cageo.2012.02.004_bib50) 2006
Samanta (10.1016/j.cageo.2012.02.004_bib52) 2004; 11
Buragohain (10.1016/j.cageo.2012.02.004_bib7) 2008; 8
10.1016/j.cageo.2012.02.004_bib15
Sexton (10.1016/j.cageo.2012.02.004_bib53) 1998; 22
Zadeh (10.1016/j.cageo.2012.02.004_bib74) 1965; 8
Goldberg (10.1016/j.cageo.2012.02.004_bib18) 1989
Mahmoudabadi (10.1016/j.cageo.2012.02.004_bib43) 2009; 13
Mamdani (10.1016/j.cageo.2012.02.004_bib44) 1975; 7
Ishigami (10.1016/j.cageo.2012.02.004_bib27) 1995; 71
Strebelle (10.1016/j.cageo.2012.02.004_bib57) 2002; 34
10.1016/j.cageo.2012.02.004_bib14
Singer (10.1016/j.cageo.2012.02.004_bib54) 2006; 38
Weller (10.1016/j.cageo.2012.02.004_bib68) 2007; 39
Hezarkhani (10.1016/j.cageo.2012.02.004_bib21) 1998; 93
Jang (10.1016/j.cageo.2012.02.004_bib30) 1993; 23
Takagi (10.1016/j.cageo.2012.02.004_bib64) 1985; 15
Ross (10.1016/j.cageo.2012.02.004_bib51) 2006
Jang (10.1016/j.cageo.2012.02.004_bib31) 1997
Kim (10.1016/j.cageo.2012.02.004_bib36) 1999; 12
Lowell (10.1016/j.cageo.2012.02.004_bib41) 1970; 65
Journel (10.1016/j.cageo.2012.02.004_bib32) 1978
Tutmez (10.1016/j.cageo.2012.02.004_bib66) 2007; 39
Lacassie (10.1016/j.cageo.2012.02.004_bib40) 2006; 38
Demuth (10.1016/j.cageo.2012.02.004_bib13) 2002
Hezarkhani (10.1016/j.cageo.2012.02.004_bib20) 2002; 13
Asadi (10.1016/j.cageo.2012.02.004_bib1) 2011
Holland (10.1016/j.cageo.2012.02.004_bib25) 1975
10.1016/j.cageo.2012.02.004_bib49
Clarici (10.1016/j.cageo.2012.02.004_bib11) 1993
10.1016/j.cageo.2012.02.004_bib45
10.1016/j.cageo.2012.02.004_bib46
References_xml – volume: 36
  start-page: 803
  year: 2004
  end-page: 826
  ident: bib48
  article-title: A hybrid neuro-fuzzy model for mineral potential mapping
  publication-title: Mathematical Geology
– volume: 12
  start-page: 301
  year: 1999
  end-page: 1319
  ident: bib36
  article-title: HyFIS: adaptive neuro-fuzzy inference systems and their application to nonlinear dynamical systems
  publication-title: Journal of Neural Network
– volume: 38
  start-page: 697
  year: 2006
  end-page: 710
  ident: bib40
  article-title: Visualization of volcanic rock geochemical data and classification with artificial neural networks
  publication-title: Mathematical Geology
– reference: McInerney, M., Dhawan, A.P., 1993. Use of genetic algorithms with backpropagation in training of feedforward neural networks. In: Proceedings of the IEEE International Conference on Neural Networks, pp. 203–208.
– reference: Tahmasebi, P., Hezarkhani, A. Multiple geostatistical simulation. In: Geostatistics, InTech Publication (in press).
– volume: 2
  start-page: 978
  year: 1999
  end-page: 982
  ident: bib17
  article-title: Training neuro-fuzzy boiler identifier with genetic algorithm and error backpropagation
  publication-title: IEEE Power Engineering Society, Summer Meeting
– volume: 7
  start-page: 1
  year: 1975
  end-page: 13
  ident: bib44
  article-title: An experiment in linguistic synthesis with a fuzzy logic controller
  publication-title: International Journal Man Machine
– volume: 39
  start-page: 657
  year: 2007
  end-page: 671
  ident: bib68
  article-title: Two supervised neural networks for classification of sedimentary organic matter images from palynological preparations
  publication-title: Mathematical Geology
– reference: Denby, B., Burnett, C., 1993. A neural network based tool for grade estimation, 24th International Symposium on the Application of Computer and Operation Research in the Mineral Industries (APCOM), Montreal, Quebec.
– reference: Tutmez, B., 2005. Reserve estimation using fuzzy set theory. Unpublished Ph.D dissertation, Hacettepe University, Ankara, pp. 168.
– year: 1978
  ident: bib32
  article-title: Mining Geostatistics
– year: 2011
  ident: bib1
  article-title: Comparative evaluation of back-propagation neural network learning algorithms and empirical correlations for prediction of oil PVT properties in Iran oilfields
  publication-title: Journal of Petroleum Science and Engineering
– volume: 15
  start-page: 116
  year: 1985
  end-page: 132
  ident: bib64
  article-title: Fuzzy identification of systems and its applications to modeling and control
  publication-title: IEEE Transactions on Systems, Man, and Cybernetics
– year: 1994
  ident: bib71
  publication-title: Fuzzy Sets Neural Networks and Soft Computing
– year: 2006
  ident: bib51
  publication-title: Fuzzy logic with Engineering Applications
– volume: 51
  start-page: 59
  year: 1999
  end-page: 64
  ident: bib72
  article-title: Artificial neural network application for a predictive task in mining
  publication-title: Mining Engineering
– volume: 24
  start-page: 293
  year: 1999
  end-page: 315
  ident: bib12
  article-title: An introduction to genetic algorithms
  publication-title: Sadhana
– reference: Bazin, D., Hübner, H., 1969. Copper deposits in Iran , Report No 13. Ministry of Economy, Geological Survey of Iran. 365 pp.
– volume: 4
  start-page: 408
  year: 2010 b
  end-page: 420
  ident: bib60
  article-title: Application of adaptive neuro-fuzzy inference system for grade estimation; case study, sarcheshmeh porphyry copper deposit, Kerman, Iran
  publication-title: Australian Journal of Basic and Applied Sciences
– volume: 71
  start-page: 257
  year: 1995
  end-page: 264
  ident: bib27
  article-title: Structure optimization of fuzzy neural network by genetic algorithm
  publication-title: Fuzzy Sets and System
– volume: 32
  start-page: 1357
  year: 2006
  end-page: 1367
  ident: bib69
  article-title: Determining the saliency of feature measurements obtained from images of sedimentary organic matter for use in its classification
  publication-title: Computers & Geosciences
– volume: 8
  start-page: 338
  year: 1965
  end-page: 353
  ident: bib74
  article-title: Fuzzy sets
  publication-title: Information and Control
– reference: Chaturvedi, D.K., Satsangi, P.S., Kalra, P.K., 1996. Effect of different mappings and normalization of neural network models. Ninth National Power Systems Conference, Indian institute of Technology, Kanpur 1, pp. 377–386.
– start-page: 145
  year: 1993
  end-page: 152
  ident: bib11
  article-title: Recoverable reserve estimation using a neural network
  publication-title: 24th International Symposium on the Application of Computer and Operation Research in the Mineral Industries (APCOM)
– volume: 65
  start-page: 373
  year: 1970
  end-page: 408
  ident: bib41
  article-title: Lateral and vertical alteration– mineralization zoning in porphyry ore deposits
  publication-title: Economic Geology
– volume: 19
  start-page: 567
  year: 1993
  end-page: 575
  ident: bib70
  article-title: Reserve estimation using neural network techniques
  publication-title: Computers & Geosciences
– year: 1997
  ident: bib31
  publication-title: Neuro-Fuzzy and Soft Computing: A Computational Approach to Learning and Machine Intelligent
– volume: 1
  start-page: 14
  year: 2003
  end-page: 26
  ident: bib5
  article-title: A new method of resource estimation for bauxite and other solid mineral deposits
  publication-title: Journal of Hungarian Geomatematics
– volume: 42
  start-page: 309
  year: 2010
  end-page: 326
  ident: bib8
  article-title: Ore grade prediction using a genetic algorithm and clustering based ensemble neural network model
  publication-title: Mathematical Geosciences
– volume: 20
  start-page: 25
  year: 2011
  end-page: 32
  ident: bib61
  article-title: Application of a modular feedforward neural network for grade estimation
  publication-title: Natural Resources Research
– year: 2002
  ident: bib13
  article-title: Neural Network Toolbox for Use with MATLAB
– year: 1975
  ident: bib25
  article-title: Adaptation in Natural and Artificial Systems. Ann Arbor: University of Michigan Press. (A 2nd edn was published in 1992
– reference: Mizutani, E., Jang, J.S.R., 1995. Coactive neural fuzzy modeling. In proceedings of the International Conference on Neural Network, pp. 760–765.
– volume: 29
  start-page: 291
  year: 1997
  end-page: 305
  ident: bib47
  article-title: Grade estimation using fuzzy-set algorithms
  publication-title: Mathematical Geology
– reference: Kapageridis, I.K., Denby, B., 1998. Neural network modeling for ore grade spatial variability. Prpceedings of the 8th International Conference on Artificial Neural Networks (ICANN), Skovde, Sweeden, pp. 209–214.
– volume: 23
  start-page: 665
  year: 1993
  end-page: 685
  ident: bib30
  article-title: ANFIS: adaptive-network-based fuzzy inference system
  publication-title: IEEE Transaction on Systems, Man and Cybernetics
– volume: 8
  start-page: 27
  year: 1999
  end-page: 35
  ident: bib10
  article-title: Fuzzy weights of evidence method and its application in mineral potential mapping
  publication-title: Natural Resources Research
– volume: 24
  start-page: 37
  year: 1999
  end-page: 54
  ident: bib28
  article-title: An investigation into the application of neural networks, fuzzy logic, genetic algorithms, and rough sets to automated knowledge acquisition for classification problems
  publication-title: Neurocomposites
– volume: 38
  start-page: 465
  year: 2006
  end-page: 475
  ident: bib54
  article-title: Typing mineral deposits using their associated rocks and grades and tonnages in a probabilistic neural network
  publication-title: Mathematical Geology
– volume: 13
  start-page: 668
  year: 2002
  end-page: 687
  ident: bib20
  article-title: Specific physico-chemical conditions (360
  publication-title: Amirkabir Journal of Sciences and Technology
– start-page: 425
  year: 2002
  end-page: 431
  ident: bib16
  article-title: Lignite quality estimation using ANN and adaptive neuro-fuzzy inference systems (ANFIS)
  publication-title: APCOM
– volume: 93
  year: 1998
  ident: bib21
  publication-title: Controls of Alteration and Mineralization in the Sungun Porphyry Copper Deposit
– volume: 6
  start-page: 3908
  year: 1999
  end-page: 3912
  ident: bib34
  article-title: Integration of a neural ore grade estimation tool in a 3D resource modeling package, neural networks. IJCNN ‘99
  publication-title: International Joint Conference on Neural Network
– volume: 33
  start-page: 421
  year: 2001
  end-page: 448
  ident: bib38
  article-title: Evaluation of interpolation accuracy of neural kriging with application to temperature-distribution analysis
  publication-title: Mathematical Geology
– volume: 12
  start-page: 209
  year: 2003
  end-page: 223
  ident: bib37
  article-title: Characterizing content distributions of impurities in a limestone mine using a feed forward neural network
  publication-title: Natural Resources Research
– volume: 44
  start-page: 1464
  year: 1997
  end-page: 1468
  ident: bib56
  article-title: Importance of input data normalization for the application of neural networks to complex industrial problems
  publication-title: IEEE Transactions on Nuclear Science
– volume: 29
  start-page: 3
  year: 2003
  end-page: 13
  ident: bib42
  article-title: Data-driven fuzzy analysis in quantitative mineral resource assessment
  publication-title: Computers & Geosciences
– volume: 28
  start-page: 1017
  year: 1996
  end-page: 1023
  ident: bib55
  article-title: Application of a feed forward neural network in the search for Kuroko deposits in the Hokuroku district, Japan
  publication-title: Mathematical Geology
– year: 1989
  ident: bib18
  publication-title: Genetic Algorithms in Search, Optimization, and Machine Learning
– volume: 11
  start-page: 69
  year: 2004
  end-page: 76
  ident: bib52
  article-title: Data segmentation and genetic algorithms for sparse data division in Nome placer gold grade estimation using neural network and geostatistics
  publication-title: Mining Exploration Geology
– year: 2006
  ident: bib50
  publication-title: Mathematical Statistics and Data Analysis
– reference: Hezarkhani, A., Williams, J.A.E., Gammons, C., 1997. Copper solubility and deposition conditions in the potassic and phyllic alteration zones, at the Sungun porphyry copper deposit, Iran. Geological Association of Canada and Mineralogical Association of Canada (GAC–MAC), Annual Meeting, Ottawa pp. 65–72.
– volume: 2
  start-page: 359
  year: 1989
  end-page: 366
  ident: bib26
  article-title: Multilayer feedforward networks are universal approximators
  publication-title: Neural Network
– volume: 34
  start-page: 1
  year: 2002
  end-page: 22
  ident: bib57
  article-title: Conditional simulation of complex geological structures using multiple-point geostatistics
  publication-title: Mathematical Geology
– volume: 2
  start-page: 217
  year: 2005
  end-page: 224
  ident: bib4
  article-title: Assessment of the completeness of mineral exploration by the application of fuzzy arithmetic and prior information
  publication-title: Acta Polytechnica Hungaricae
– volume: 49
  start-page: 205
  year: 2008
  end-page: 211
  ident: bib73
  article-title: Using adaptive network based fuzzy inference system to forecast regional electricity loads
  publication-title: Energy Conversation and Management
– volume: 13
  start-page: 91
  year: 2009
  end-page: 101
  ident: bib43
  article-title: A hybrid method for grade estimation using genetic algorithm and neural networks
  publication-title: Computational Geosciences
– reference: Rendu, J.M., 1979. Kriging, logarithmic Kriging, and conditional expectation: comparison of theory with actual results, Proc. 16th APCOM Symposium. Tucson, Arizona, pp. 199–212.
– reference: Ke, J., 2002. Neural network modeling of placer ore grade spatial variability. Unpublished Ph.D Dissertation, University of Alaska Fairbanks, pp. 251.
– volume: 27
  start-page: 679
  year: 1999
  end-page: 684
  ident: bib19
  article-title: Comparing backpropagation with a genetic algorithm for neural network training
  publication-title: Omega
– volume: 39
  start-page: 87
  year: 2007
  end-page: 111
  ident: bib66
  article-title: Fuzzy modeling for reserve estimation based on spatial variability
  publication-title: Mathematical Geology
– volume: 22
  start-page: 63
  year: 1990
  end-page: 79
  ident: bib2
  article-title: Kriging with imprecise (Fuzzy) variogram I: theory
  publication-title: Mathematical Geology
– reference: Jang, J.S.R., 1992. Neuro-fuzzy modeling: architecture, analyses and applications. Unpublished Ph.D Dissertation, Department of Electrical Engineering and Computer Science, University of California, Berkeley, California.
– volume: 4
  start-page: 764
  year: 2010
  end-page: 772
  ident: bib59
  article-title: Comparison of optimized neural network with fuzzy logic for ore grade estimation
  publication-title: Australian Journal of Basic and Applied Sciences
– reference: Etminan, H., 1977. A porphyry copper–molybdenum deposit near the Sungun village. Internal Report, Geological Survey of Iran, p. 240.
– volume: IAMG09
  year: 2009
  ident: bib58
  publication-title: Application of Optimized Neural Network by Genetic Algorithm
– volume: 11
  start-page: 135
  year: 2002
  end-page: 156
  ident: bib39
  article-title: Neural network-based estimation of principal metal contents in the Hokuroku district, Northern Japan, for exploring Kuroko-type deposits
  publication-title: Natural Resources Research
– reference: Tahmasebi, P., Hezarkhani, A., Sahimi, M. Multiple-Point Geostatistical Modeling based on the Cross-Correlation Functions, Computational Geosciences (in press).
– volume: 22
  start-page: 81
  year: 1990
  end-page: 94
  ident: bib3
  article-title: Kriging with imprecise (fuzzy) variograms. II application
  publication-title: Mathematical Geology
– volume: 34
  start-page: 770
  year: 1999
  end-page: 783
  ident: bib23
  article-title: Factors controlling copper solubility and chalcopyrite deposition in the Sungun porphyry copper deposit, Iran
  publication-title: Mineralium Deposita
– volume: 22
  start-page: 171
  year: 1998
  end-page: 185
  ident: bib53
  article-title: Toward global optimization of neural networks: a comparison of the genetic algorithm and backpropagation
  publication-title: Decision Support Systems
– volume: 31
  start-page: 1213
  year: 2005
  end-page: 1223
  ident: bib67
  article-title: The semi-automated classification of sedimentary organic matter in palynological preparations
  publication-title: Computers & Geosciences
– volume: 8
  start-page: 609
  year: 2008
  end-page: 625
  ident: bib7
  article-title: A novel approach for ANFIS modeling based on full factorial design
  publication-title: Applied Soft Computing archive
– ident: 10.1016/j.cageo.2012.02.004_bib15
– volume: 36
  start-page: 803
  issue: 7
  year: 2004
  ident: 10.1016/j.cageo.2012.02.004_bib48
  article-title: A hybrid neuro-fuzzy model for mineral potential mapping
  publication-title: Mathematical Geology
  doi: 10.1023/B:MATG.0000041180.34176.65
– volume: 39
  start-page: 87
  issue: 1
  year: 2007
  ident: 10.1016/j.cageo.2012.02.004_bib66
  article-title: Fuzzy modeling for reserve estimation based on spatial variability
  publication-title: Mathematical Geology
  doi: 10.1007/s11004-006-9066-4
– start-page: 145
  year: 1993
  ident: 10.1016/j.cageo.2012.02.004_bib11
  article-title: Recoverable reserve estimation using a neural network
– volume: 39
  start-page: 657
  issue: 1
  year: 2007
  ident: 10.1016/j.cageo.2012.02.004_bib68
  article-title: Two supervised neural networks for classification of sedimentary organic matter images from palynological preparations
  publication-title: Mathematical Geology
  doi: 10.1007/s11004-007-9120-x
– volume: 29
  start-page: 3
  year: 2003
  ident: 10.1016/j.cageo.2012.02.004_bib42
  article-title: Data-driven fuzzy analysis in quantitative mineral resource assessment
  publication-title: Computers & Geosciences
  doi: 10.1016/S0098-3004(02)00078-X
– volume: 7
  start-page: 1
  issue: 1
  year: 1975
  ident: 10.1016/j.cageo.2012.02.004_bib44
  article-title: An experiment in linguistic synthesis with a fuzzy logic controller
  publication-title: International Journal Man Machine
  doi: 10.1016/S0020-7373(75)80002-2
– volume: 49
  start-page: 205
  year: 2008
  ident: 10.1016/j.cageo.2012.02.004_bib73
  article-title: Using adaptive network based fuzzy inference system to forecast regional electricity loads
  publication-title: Energy Conversation and Management
  doi: 10.1016/j.enconman.2007.06.015
– volume: 1
  start-page: 14
  year: 2003
  ident: 10.1016/j.cageo.2012.02.004_bib5
  article-title: A new method of resource estimation for bauxite and other solid mineral deposits
  publication-title: Journal of Hungarian Geomatematics
– ident: 10.1016/j.cageo.2012.02.004_bib9
– year: 1978
  ident: 10.1016/j.cageo.2012.02.004_bib32
– volume: 65
  start-page: 373
  year: 1970
  ident: 10.1016/j.cageo.2012.02.004_bib41
  article-title: Lateral and vertical alteration– mineralization zoning in porphyry ore deposits
  publication-title: Economic Geology
  doi: 10.2113/gsecongeo.65.4.373
– year: 2011
  ident: 10.1016/j.cageo.2012.02.004_bib1
  article-title: Comparative evaluation of back-propagation neural network learning algorithms and empirical correlations for prediction of oil PVT properties in Iran oilfields
  publication-title: Journal of Petroleum Science and Engineering
– volume: 33
  start-page: 421
  issue: 4
  year: 2001
  ident: 10.1016/j.cageo.2012.02.004_bib38
  article-title: Evaluation of interpolation accuracy of neural kriging with application to temperature-distribution analysis
  publication-title: Mathematical Geology
  doi: 10.1023/A:1011084812324
– volume: 11
  start-page: 135
  issue: 2
  year: 2002
  ident: 10.1016/j.cageo.2012.02.004_bib39
  article-title: Neural network-based estimation of principal metal contents in the Hokuroku district, Northern Japan, for exploring Kuroko-type deposits
  publication-title: Natural Resources Research
  doi: 10.1023/A:1015520204066
– volume: 44
  start-page: 1464
  issue: 3
  year: 1997
  ident: 10.1016/j.cageo.2012.02.004_bib56
  article-title: Importance of input data normalization for the application of neural networks to complex industrial problems
  publication-title: IEEE Transactions on Nuclear Science
  doi: 10.1109/23.589532
– volume: 22
  start-page: 63
  issue: 1
  year: 1990
  ident: 10.1016/j.cageo.2012.02.004_bib2
  article-title: Kriging with imprecise (Fuzzy) variogram I: theory
  publication-title: Mathematical Geology
  doi: 10.1007/BF00890297
– year: 2002
  ident: 10.1016/j.cageo.2012.02.004_bib13
– volume: 12
  start-page: 209
  issue: 3
  year: 2003
  ident: 10.1016/j.cageo.2012.02.004_bib37
  article-title: Characterizing content distributions of impurities in a limestone mine using a feed forward neural network
  publication-title: Natural Resources Research
  doi: 10.1023/A:1025180005454
– volume: 11
  start-page: 69
  issue: 1–4
  year: 2004
  ident: 10.1016/j.cageo.2012.02.004_bib52
  article-title: Data segmentation and genetic algorithms for sparse data division in Nome placer gold grade estimation using neural network and geostatistics
  publication-title: Mining Exploration Geology
– volume: 22
  start-page: 81
  issue: 1
  year: 1990
  ident: 10.1016/j.cageo.2012.02.004_bib3
  article-title: Kriging with imprecise (fuzzy) variograms. II application
  publication-title: Mathematical Geology
  doi: 10.1007/BF00890298
– ident: 10.1016/j.cageo.2012.02.004_bib62
– volume: 31
  start-page: 1213
  issue: 10
  year: 2005
  ident: 10.1016/j.cageo.2012.02.004_bib67
  article-title: The semi-automated classification of sedimentary organic matter in palynological preparations
  publication-title: Computers & Geosciences
  doi: 10.1016/j.cageo.2005.03.011
– volume: 19
  start-page: 567
  issue: 4
  year: 1993
  ident: 10.1016/j.cageo.2012.02.004_bib70
  article-title: Reserve estimation using neural network techniques
  publication-title: Computers & Geosciences
  doi: 10.1016/0098-3004(93)90082-G
– volume: 8
  start-page: 609
  year: 2008
  ident: 10.1016/j.cageo.2012.02.004_bib7
  article-title: A novel approach for ANFIS modeling based on full factorial design
  publication-title: Applied Soft Computing archive
  doi: 10.1016/j.asoc.2007.03.010
– ident: 10.1016/j.cageo.2012.02.004_bib33
  doi: 10.1007/978-1-4471-1599-1_28
– volume: 23
  start-page: 665
  issue: 3
  year: 1993
  ident: 10.1016/j.cageo.2012.02.004_bib30
  article-title: ANFIS: adaptive-network-based fuzzy inference system
  publication-title: IEEE Transaction on Systems, Man and Cybernetics
  doi: 10.1109/21.256541
– volume: 32
  start-page: 1357
  issue: 9
  year: 2006
  ident: 10.1016/j.cageo.2012.02.004_bib69
  article-title: Determining the saliency of feature measurements obtained from images of sedimentary organic matter for use in its classification
  publication-title: Computers & Geosciences
  doi: 10.1016/j.cageo.2005.12.007
– volume: 13
  start-page: 668
  issue: 52
  year: 2002
  ident: 10.1016/j.cageo.2012.02.004_bib20
  article-title: Specific physico-chemical conditions (360°C) for chalcopyrite dissolution/deposition in the Sungun porphyry copper deposit, Iran
  publication-title: Amirkabir Journal of Sciences and Technology
– volume: 24
  start-page: 37
  year: 1999
  ident: 10.1016/j.cageo.2012.02.004_bib28
  article-title: An investigation into the application of neural networks, fuzzy logic, genetic algorithms, and rough sets to automated knowledge acquisition for classification problems
  publication-title: Neurocomposites
  doi: 10.1016/S0925-2312(98)00090-3
– volume: 8
  start-page: 27
  issue: 1
  year: 1999
  ident: 10.1016/j.cageo.2012.02.004_bib10
  article-title: Fuzzy weights of evidence method and its application in mineral potential mapping
  publication-title: Natural Resources Research
  doi: 10.1023/A:1021677510649
– volume: 12
  start-page: 301
  year: 1999
  ident: 10.1016/j.cageo.2012.02.004_bib36
  article-title: HyFIS: adaptive neuro-fuzzy inference systems and their application to nonlinear dynamical systems
  publication-title: Journal of Neural Network
  doi: 10.1016/S0893-6080(99)00067-2
– ident: 10.1016/j.cageo.2012.02.004_bib6
– volume: 4
  start-page: 408
  issue: 3
  year: 2010
  ident: 10.1016/j.cageo.2012.02.004_bib60
  article-title: Application of adaptive neuro-fuzzy inference system for grade estimation; case study, sarcheshmeh porphyry copper deposit, Kerman, Iran
  publication-title: Australian Journal of Basic and Applied Sciences
– ident: 10.1016/j.cageo.2012.02.004_bib65
– ident: 10.1016/j.cageo.2012.02.004_bib45
  doi: 10.1109/ICNN.1993.298557
– year: 2006
  ident: 10.1016/j.cageo.2012.02.004_bib51
– year: 2006
  ident: 10.1016/j.cageo.2012.02.004_bib50
– volume: IAMG09
  year: 2009
  ident: 10.1016/j.cageo.2012.02.004_bib58
– volume: 4
  start-page: 764
  issue: 5
  year: 2010
  ident: 10.1016/j.cageo.2012.02.004_bib59
  article-title: Comparison of optimized neural network with fuzzy logic for ore grade estimation
  publication-title: Australian Journal of Basic and Applied Sciences
– volume: 8
  start-page: 338
  year: 1965
  ident: 10.1016/j.cageo.2012.02.004_bib74
  article-title: Fuzzy sets
  publication-title: Information and Control
  doi: 10.1016/S0019-9958(65)90241-X
– volume: 2
  start-page: 359
  issue: 5
  year: 1989
  ident: 10.1016/j.cageo.2012.02.004_bib26
  article-title: Multilayer feedforward networks are universal approximators
  publication-title: Neural Network
  doi: 10.1016/0893-6080(89)90020-8
– volume: 6
  start-page: 3908
  year: 1999
  ident: 10.1016/j.cageo.2012.02.004_bib34
  article-title: Integration of a neural ore grade estimation tool in a 3D resource modeling package, neural networks. IJCNN ‘99
  publication-title: International Joint Conference on Neural Network
  doi: 10.1109/IJCNN.1999.830780
– volume: 24
  start-page: 293
  issue: 4–5
  year: 1999
  ident: 10.1016/j.cageo.2012.02.004_bib12
  article-title: An introduction to genetic algorithms
  publication-title: Sadhana
  doi: 10.1007/BF02823145
– volume: 71
  start-page: 257
  year: 1995
  ident: 10.1016/j.cageo.2012.02.004_bib27
  article-title: Structure optimization of fuzzy neural network by genetic algorithm
  publication-title: Fuzzy Sets and System
  doi: 10.1016/0165-0114(94)00283-D
– year: 1975
  ident: 10.1016/j.cageo.2012.02.004_bib25
– ident: 10.1016/j.cageo.2012.02.004_bib49
– year: 1997
  ident: 10.1016/j.cageo.2012.02.004_bib31
– start-page: 425
  year: 2002
  ident: 10.1016/j.cageo.2012.02.004_bib16
  article-title: Lignite quality estimation using ANN and adaptive neuro-fuzzy inference systems (ANFIS)
  publication-title: APCOM
– volume: 2
  start-page: 978
  year: 1999
  ident: 10.1016/j.cageo.2012.02.004_bib17
  article-title: Training neuro-fuzzy boiler identifier with genetic algorithm and error backpropagation
  publication-title: IEEE Power Engineering Society, Summer Meeting
– ident: 10.1016/j.cageo.2012.02.004_bib22
– year: 1994
  ident: 10.1016/j.cageo.2012.02.004_bib71
– volume: 2
  start-page: 217
  issue: 1
  year: 2005
  ident: 10.1016/j.cageo.2012.02.004_bib4
  article-title: Assessment of the completeness of mineral exploration by the application of fuzzy arithmetic and prior information
  publication-title: Acta Polytechnica Hungaricae
– year: 1989
  ident: 10.1016/j.cageo.2012.02.004_bib18
– volume: 38
  start-page: 697
  issue: 6
  year: 2006
  ident: 10.1016/j.cageo.2012.02.004_bib40
  article-title: Visualization of volcanic rock geochemical data and classification with artificial neural networks
  publication-title: Mathematical Geology
  doi: 10.1007/s11004-006-9042-z
– ident: 10.1016/j.cageo.2012.02.004_bib35
– volume: 29
  start-page: 291
  issue: 2
  year: 1997
  ident: 10.1016/j.cageo.2012.02.004_bib47
  article-title: Grade estimation using fuzzy-set algorithms
  publication-title: Mathematical Geology
  doi: 10.1007/BF02769634
– ident: 10.1016/j.cageo.2012.02.004_bib63
  doi: 10.1007/s10596-012-9287-1
– volume: 51
  start-page: 59
  issue: 2
  year: 1999
  ident: 10.1016/j.cageo.2012.02.004_bib72
  article-title: Artificial neural network application for a predictive task in mining
  publication-title: Mining Engineering
– volume: 15
  start-page: 116
  issue: 1
  year: 1985
  ident: 10.1016/j.cageo.2012.02.004_bib64
  article-title: Fuzzy identification of systems and its applications to modeling and control
  publication-title: IEEE Transactions on Systems, Man, and Cybernetics
  doi: 10.1109/TSMC.1985.6313399
– ident: 10.1016/j.cageo.2012.02.004_bib14
– volume: 22
  start-page: 171
  issue: 2
  year: 1998
  ident: 10.1016/j.cageo.2012.02.004_bib53
  article-title: Toward global optimization of neural networks: a comparison of the genetic algorithm and backpropagation
  publication-title: Decision Support Systems
  doi: 10.1016/S0167-9236(97)00040-7
– volume: 42
  start-page: 309
  issue: 3
  year: 2010
  ident: 10.1016/j.cageo.2012.02.004_bib8
  article-title: Ore grade prediction using a genetic algorithm and clustering based ensemble neural network model
  publication-title: Mathematical Geosciences
  doi: 10.1007/s11004-010-9264-y
– ident: 10.1016/j.cageo.2012.02.004_bib46
  doi: 10.1109/ICNN.1995.487513
– volume: 13
  start-page: 91
  year: 2009
  ident: 10.1016/j.cageo.2012.02.004_bib43
  article-title: A hybrid method for grade estimation using genetic algorithm and neural networks
  publication-title: Computational Geosciences
  doi: 10.1007/s10596-008-9107-9
– volume: 20
  start-page: 25
  issue: 1
  year: 2011
  ident: 10.1016/j.cageo.2012.02.004_bib61
  article-title: Application of a modular feedforward neural network for grade estimation
  publication-title: Natural Resources Research
  doi: 10.1007/s11053-011-9135-3
– volume: 27
  start-page: 679
  year: 1999
  ident: 10.1016/j.cageo.2012.02.004_bib19
  article-title: Comparing backpropagation with a genetic algorithm for neural network training
  publication-title: Omega
  doi: 10.1016/S0305-0483(99)00027-4
– volume: 34
  start-page: 1
  issue: 1
  year: 2002
  ident: 10.1016/j.cageo.2012.02.004_bib57
  article-title: Conditional simulation of complex geological structures using multiple-point geostatistics
  publication-title: Mathematical Geology
  doi: 10.1023/A:1014009426274
– volume: 93
  year: 1998
  ident: 10.1016/j.cageo.2012.02.004_bib21
– volume: 34
  start-page: 770
  year: 1999
  ident: 10.1016/j.cageo.2012.02.004_bib23
  article-title: Factors controlling copper solubility and chalcopyrite deposition in the Sungun porphyry copper deposit, Iran
  publication-title: Mineralium Deposita
  doi: 10.1007/s001260050237
– ident: 10.1016/j.cageo.2012.02.004_bib29
– volume: 28
  start-page: 1017
  issue: 8
  year: 1996
  ident: 10.1016/j.cageo.2012.02.004_bib55
  article-title: Application of a feed forward neural network in the search for Kuroko deposits in the Hokuroku district, Japan
  publication-title: Mathematical Geology
  doi: 10.1007/BF02068587
– volume: 38
  start-page: 465
  issue: 4
  year: 2006
  ident: 10.1016/j.cageo.2012.02.004_bib54
  article-title: Typing mineral deposits using their associated rocks and grades and tonnages in a probabilistic neural network
  publication-title: Mathematical Geology
  doi: 10.1007/s11004-005-9023-7
SSID ssj0002285
Score 2.4845288
Snippet The grade estimation is a quite important and money/time-consuming stage in a mine project, which is considered as a challenge for the geologists and mining...
SourceID pubmedcentral
proquest
pubmed
crossref
fao
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 18
SubjectTerms Adaptive systems
algorithms
Artificial neural networks
case studies
Coactive neuro-fuzzy inference system (CANFIS)
computers
Fuzzy logic
Genetic algorithm
Genetic algorithms
Grade estimation
Iran
Learning theory
Mathematical models
mineralogy
mining
momentum
Networks
Neural networks
Parallel optimization
Title A hybrid neural networks-fuzzy logic-genetic algorithm for grade estimation
URI https://dx.doi.org/10.1016/j.cageo.2012.02.004
https://www.ncbi.nlm.nih.gov/pubmed/25540468
https://www.proquest.com/docview/1642276989
https://www.proquest.com/docview/1859697294
https://www.proquest.com/docview/2000073308
https://pubmed.ncbi.nlm.nih.gov/PMC4268588
Volume 42
WOSCitedRecordID wos000303291400003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1873-7803
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002285
  issn: 0098-3004
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3da9swEBdLusFeyr6bfRQP9pYZbFm2pccwunUblMFSyJtQZTkfbZzgJKPJX9-TZNnJuoTtYRBMYktycvfznU45_Q6hD7mMEslk5CvwDj4hTPgszkJfxQxn4O6jRGWm2ER6cUEHA_ajquK4MOUE0qKgt7ds_l9VDedA2Xrr7D-oux4UTsB7UDocQe1w_CvF97qjtd6G1dVUlaCAwiZ6L_x8tdmsu8bW-dBbGarWm-GsHC9HU5NuOCxFprqad2PaKMzRGFTlHxYGLENVkWA2KYh9MZqCS7wa27TfybTB3bnaiPJ6ZMtHdXtlpvSa-PaCg87ccOl9zogy6muirm0jaimyKitoLeo942zXCSYQeA_Nvku9DKvpUsl2axDmfGpUA8EOgeidNp6qzh90l1roCKcxo2101Pt6NvhW-2CMaezYUvVXdXxTJrPv3v01I3Q14r7pSSsXsz8FIb_n0m5NTvpP0HEVVXg9i4an6IEqnqFHX0zV5vVz9L3nWUx4FhPeLia8HUx4NSY8wIRnMOE1mHiBLj-f9T-d-1UVDV-AbV36mQxEmjPF4qs4y-McBIYjEcYwUc1ZmuFARCGWessXZlTmIlUykSLMmQwFDgiJXqJ2MSvUCfLyJCAiSwIZJpLAsAIT-IAzRhNKJE06CDvhcVlRzOtKJzfc5RJOuBE-18LnAbwC0kEf605zy7ByuHnitMIroNvJHweYHe54AjrkYgjOk1_-xJpaUU_Q04h20HunWA7WVf9lJgo1Wy14COE5TnWR1QNtaMwSBtIj-9tgkzIQRQHc65UFTP1jHfQ6KN2BUt1AM8DvXinGI8MED9NrGlP6eu-Yb9Dj5hF-i9rLcqXeoYfy13K8KE9RKx3Q0-rZuQPgecmG
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+hybrid+neural+networks-fuzzy+logic-genetic+algorithm+for+grade+estimation&rft.jtitle=Computers+%26+geosciences&rft.au=Tahmasebi%2C+Pejman&rft.au=Hezarkhani%2C+Ardeshir&rft.date=2012-05-01&rft.issn=0098-3004&rft.volume=42&rft.spage=18&rft_id=info:doi/10.1016%2Fj.cageo.2012.02.004&rft_id=info%3Apmid%2F25540468&rft.externalDocID=25540468
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0098-3004&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0098-3004&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0098-3004&client=summon