Fundamentals of Wireless Sensor Networks Theory and Practice

In this book, the authors describe the fundamental concepts and practical aspects of wireless sensor networks. The book provides a comprehensive view to this rapidly evolving field, including its many novel applications, ranging from protecting civil infrastructure to pervasive health monitoring. Us...

Full description

Saved in:
Bibliographic Details
Main Authors: Dargie, Waltenegus, Poellabauer, Christian
Format: eBook
Language:English
Published: Hoboken Wiley 2010
WILEY
John Wiley & Sons, Incorporated
Wiley-Blackwell
Edition:1
Series:Wireless Communications and Mobile Computing
Subjects:
ISBN:9780470997659, 0470997656, 9780470666395, 0470666390, 0470975687, 9780470975688
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Table of Contents:
  • About the Series Editors xv Preface xvii Part One: INTRODUCTION 1 Motivation for a Network of Wireless Sensor Nodes 3 1.1 Definitions and Background 4 1.2 Challenges and Constraints 9 2 Applications 17 2.1 Structural Health Monitoring 17 2.2 Traffic Control 26 2.3 Health Care 30 2.4 Pipeline Monitoring 35 2.5 Precision Agriculture 36 2.6 Active Volcano 38 2.7 Underground Mining 40 3 Node Architecture 47 3.1 The Sensing Subsystem 48 3.2 The Processor Subsystem 51 3.3 Communication Interfaces 58 3.4 Prototypes 62 4 Operating Systems 69 4.1 Functional Aspects 70 4.2 Nonfunctional Aspects 73 4.3 Prototypes 75 4.4 Evaluation 88 Part Two: BASIC ARCHITECTURAL FRAMEWORK 5 Physical Layer 95 5.1 Basic Components 95 5.2 Source Encoding 96 5.3 Channel Encoding 101 5.4 Modulation 106 6 Medium Access Control 125 6.1 Overview 125 6.2 Wireless MAC Protocols 128 6.3 Characteristics of MAC Protocols in Sensor Networks 133 6.4 Contention-Free MAC Protocols 135 6.5 Contention-Based MAC Protocols 144 6.6 Hybrid MAC Protocols 154 6.7 Summary 157 7 Network Layer 163 7.1 Overview 163 7.2 Routing Metrics 165 7.3 Flooding and Gossiping 168 7.4 Data-Centric Routing 170 7.5 Proactive Routing 176 7.6 On-Demand Routing 178 7.7 Hierarchical Routing 180 7.8 Location-Based Routing 183 7.9 QoS-Based Routing Protocols 192 7.10 Summary 196 Part Three: NODE AND NETWORK MANAGEMENT 8 Power Management 207 8.1 Local Power Management Aspects 208 8.2 Dynamic Power Management 216 8.3 Conceptual Architecture 222 9 Time Synchronization 229 9.1 Clocks and the Synchronization Problem 229 9.2 Time Synchronization in Wireless Sensor Networks 231 9.3 Basics of Time Synchronization 234 9.4 Time Synchronization Protocols 237 10 Localization 249 10.1 Overview 249 10.2 Ranging Techniques 250 10.3 Range-Based Localization 252 10.4 Range-Free Localization 258 10.5 Event-Driven Localization 262 11 Security 267 11.1 Fundamentals of Network Security 267 11.2 Challenges of Security in Wireless Sensor Networks 269 11.3 Security Attacks in Sensor Networks 270 11.4 Protocols and Mechanisms for Security 274 11.5 IEEE 802.15.4 and ZigBee Security 280 11.6 Summary 281 12 Sensor Network Programming 285 12.1 Challenges in Sensor Network Programming 285 12.2 Node-Centric Programming 286 12.3 Macroprogramming 293 12.4 Dynamic Reprogramming 295 12.5 Sensor Network Simulators 297 Exercises 299 References 300 Index 303
  • Fundamentals of wireless sensor networks : theory and practice -- Contents -- About the Series Editors -- Preface -- Part One: Introduction -- 1. Motivation for a Network of Wireless Sensor Nodes -- 2. Applications -- 3. Node Architecture -- 4. Operating Systems -- Part Two: Basic Architectural Framework -- 6. Medium Access Control -- 7. Network Layer -- Part Three: Node and Network Management -- 8. Power Management -- 9. Time Synchronization -- 10. Localization -- 11. Security -- 12. Sensor Network Programming -- Index.
  • 4.1.1 Data Types -- 4.1.2 Scheduling -- 4.1.3 Stacks -- 4.1.4 System Calls -- 4.1.5 Handling Interrupts -- 4.1.6 Multithreading -- 4.1.7 Thread-Based vs Event-Based Programming -- 4.1.8 Memory Allocation -- 4.2 Nonfunctional Aspects -- 4.2.1 Separation of Concern -- 4.2.2 System Overhead -- 4.2.3 Portability -- 4.2.4 Dynamic Reprogramming -- 4.3 Prototypes -- 4.3.1 TinyOS -- 4.3.2 SOS -- 4.3.3 Contiki -- 4.3.4 LiteOS -- 4.4 Evaluation -- Exercises -- References -- Part Two: BASIC ARCHITECTURAL FRAMEWORK -- 5 Physical Layer -- 5.1 Basic Components -- 5.2 Source Encoding -- 5.2.1 The Efficiency of a Source Encoder -- 5.2.2 Pulse Code Modulation and Delta Modulation -- 5.3 Channel Encoding -- 5.3.1 Types of Channels -- 5.3.2 Information Transmission over a Channel -- 5.3.3 Error Recognition and Correction -- 5.4 Modulation -- 5.4.1 Modulation Types -- 5.4.2 Quadratic Amplitude Modulation -- 5.4.3 Summary Signal Propagation -- 5.5 Signal Propagation -- Exercises -- References -- 6 Medium Access Control -- 6.1 Overview -- 6.1.1 Contention-Free Medium Access -- 6.1.2 Contention-Based Medium Access -- 6.2 Wireless MAC Protocols -- 6.2.1 Carrier Sense Multiple Access -- 6.2.2 Multiple Access with Collision Avoidance (MACA) and MACAW -- 6.2.3 MACA By Invitation -- 6.2.4 IEEE 802.11 -- 6.2.5 IEEE 802.15.4 and ZigBee -- 6.3 Characteristics of MAC Protocols in Sensor Networks -- 6.3.1 Energy Efficiency -- 6.3.2 Scalability -- 6.3.3 Adaptability -- 6.3.4 Low Latency and Predictability -- 6.3.5 Reliability -- 6.4 Contention-Free MAC Protocols -- 6.4.1 Characteristics -- 6.4.2 Traffic-Adaptive Medium Access -- 6.4.3 Y-MAC -- 6.4.4 DESYNC-TDMA -- 6.4.5 Low-Energy Adaptive Clustering Hierarchy -- 6.4.6 Lightweight Medium Access Control -- 6.5 Contention-Based MAC Protocols -- 6.5.1 Power Aware Multi-Access with Signaling -- 6.5.2 Sensor MAC -- 6.5.3 Timeout MAC
  • Intro -- FUNDAMENTALS OF WIRELESS SENSOR NETWORKS -- Contents -- About the Series Editors -- Preface -- Part One: INTRODUCTION -- 1 Motivation for a Network of Wireless Sensor Nodes -- 1.1 Definitions and Background -- 1.1.1 Sensing and Sensors -- 1.1.2 Wireless Sensor Networks -- 1.2 Challenges and Constraints -- 1.2.1 Energy -- 1.2.2 Self-Management -- 1.2.3 Wireless Networking -- 1.2.4 Decentralized Management -- 1.2.5 Design Constraints -- 1.2.6 Security -- 1.2.7 Other Challenges -- Exercises -- References -- 2 Applications -- 2.1 Structural Health Monitoring -- 2.1.1 Sensing Seismic Events -- 2.1.2 Single Damage Detection Using Natural Frequencies -- 2.1.3 Multiple Damage Detection Using Natural Frequencies -- 2.1.4 Multiple Damage Detection Using Mode Shapes -- 2.1.5 Coherence -- 2.1.6 Piezoelectric Effect -- 2.1.7 Prototypes -- 2.2 Traffic Control -- 2.2.1 The Sensing Task -- 2.2.2 Prototypes -- 2.3 Health Care -- 2.3.1 Available Sensors -- 2.3.2 Prototypes -- 2.4 Pipeline Monitoring -- 2.4.1 Prototype -- 2.5 Precision Agriculture -- 2.5.1 Prototypes -- 2.6 Active Volcano -- 2.6.1 Prototypes -- 2.7 Underground Mining -- 2.7.1 Sources of Accidents -- 2.7.2 The Sensing Task -- Exercises -- References -- 3 Node Architecture -- 3.1 The Sensing Subsystem -- 3.1.1 Analog-to-Digital Converter -- 3.2 The Processor Subsystem -- 3.2.1 Architectural Overview -- 3.2.2 Microcontroller -- 3.2.3 Digital Signal Processor -- 3.2.4 Application-Specific Integrated Circuit -- 3.2.5 Field Programmable Gate Array -- 3.2.6 Comparison -- 3.3 Communication Interfaces -- 3.3.1 Serial Peripheral Interface -- 3.3.2 Inter-Integrated Circuit -- 3.3.3 Summary -- 3.4 Prototypes -- 3.4.1 The IMote Node Architecture -- 3.4.2 The XYZ Node Architecture -- 3.4.3 The Hogthrob Node Architecture -- Exercises -- References -- 4 Operating Systems -- 4.1 Functional Aspects
  • 12 Sensor Network Programming -- 12.1 Challenges in Sensor Network Programming -- 12.2 Node-Centric Programming -- 12.2.1 nesC Language -- 12.2.2 TinyGALS -- 12.2.3 Sensor Network Application Construction Kit -- 12.2.4 Thread-Based Model -- 12.3 Macroprogramming -- 12.3.1 Abstract Regions -- 12.3.2 EnviroTrack -- 12.3.3 Database Approaches -- 12.4 Dynamic Reprogramming -- 12.5 Sensor Network Simulators -- 12.5.1 Network Simulator Tools and Environments -- Exercises -- References -- Index
  • 6.5.4 Pattern MAC -- 6.5.5 Routing-Enhanced MAC -- 6.5.6 Data-Gathering MAC -- 6.5.7 Preamble Sampling and WiseMAC -- 6.5.8 Receiver-Initiated MAC -- 6.6 Hybrid MAC Protocols -- 6.6.1 Zebra MAC -- 6.6.2 Mobility Adaptive Hybrid MAC -- 6.7 Summary -- Exercises -- References -- 7 Network Layer -- 7.1 Overview -- 7.2 Routing Metrics -- 7.2.1 Commonly Used Metrics -- 7.3 Flooding and Gossiping -- 7.4 Data-Centric Routing -- 7.4.1 Sensor Protocols for Information via Negotiation -- 7.4.2 Directed Diffusion -- 7.4.3 Rumor Routing -- 7.4.4 Gradient-Based Routing -- 7.5 Proactive Routing -- 7.5.1 Destination-Sequenced Distance Vector -- 7.5.2 Optimized Link State Routing -- 7.6 On-Demand Routing -- 7.6.1 Ad Hoc On-Demand Distance Vector -- 7.6.2 Dynamic Source Routing -- 7.7 Hierarchical Routing -- 7.8 Location-Based Routing -- 7.8.1 Unicast Location-Based Routing -- 7.8.2 Multicast Location-Based Routing -- 7.8.3 Geocasting -- 7.9 QoS-Based Routing Protocols -- 7.9.1 Sequential Assignment Routing -- 7.9.2 SPEED -- 7.9.3 Multipath Multi-SPEED -- 7.10 Summary -- Exercises -- References -- Part Three: NODE AND NETWORK MANAGEMENT -- 8 Power Management -- 8.1 Local Power Management Aspects -- 8.1.1 Processor Subsystem -- 8.1.2 Communication Subsystem -- 8.1.3 Bus Frequency and RAM Timing -- 8.1.4 Active Memory -- 8.1.5 Power Subsystem -- 8.2 Dynamic Power Management -- 8.2.1 Dynamic Operation Modes -- 8.2.2 Dynamic Scaling -- 8.2.3 Task Scheduling -- 8.3 Conceptual Architecture -- 8.3.1 Architectural Overview -- Exercises -- References -- 9 Time Synchronization -- 9.1 Clocks and the Synchronization Problem -- 9.2 Time Synchronization in Wireless Sensor Networks -- 9.2.1 Reasons for Time Synchronization -- 9.2.2 Challenges for Time Synchronization -- 9.3 Basics of Time Synchronization -- 9.3.1 Synchronization Messages
  • 9.3.2 Nondeterminism of Communication Latency -- 9.4 Time Synchronization Protocols -- 9.4.1 Reference Broadcasts Using Global Sources of Time -- 9.4.2 Lightweight Tree-Based Synchronization -- 9.4.3 Timing-sync Protocol for Sensor Networks -- 9.4.4 Flooding Time Synchronization Protocol -- 9.4.5 Reference-Broadcast Synchronization -- 9.4.6 Time-Diffusion Synchronization Protocol -- 9.4.7 Mini-Sync and Tiny-Sync -- Exercises -- References -- 10 Localization -- 10.1 Overview -- 10.2 Ranging Techniques -- 10.2.1 Time of Arrival -- 10.2.2 Time Difference of Arrival -- 10.2.3 Angle of Arrival -- 10.2.4 Received Signal Strength -- 10.3 Range-Based Localization -- 10.3.1 Triangulation -- 10.3.2 Trilateration -- 10.3.3 Iterative and Collaborative Multilateration -- 10.3.4 GPS-Based Localization -- 10.4 Range-Free Localization -- 10.4.1 Ad Hoc Positioning System (APS) -- 10.4.2 Approximate Point in Triangulation -- 10.4.3 Localization Based on Multidimensional Scaling -- 10.5 Event-Driven Localization -- 10.5.1 The Lighthouse Approach -- 10.5.2 Multi-Sequence Positioning -- Exercises -- References -- 11 Security -- 11.1 Fundamentals of Network Security -- 11.2 Challenges of Security in Wireless Sensor Networks -- 11.3 Security Attacks in Sensor Networks -- 11.3.1 Denial-of-Service -- 11.3.2 Attacks on Routing -- 11.3.3 Attacks on Transport Layer -- 11.3.4 Attacks on Data Aggregation -- 11.3.5 Privacy Attacks -- 11.4 Protocols and Mechanisms for Security -- 11.4.1 Symmetric and Public Key Cryptography -- 11.4.2 Key Management -- 11.4.3 Defenses Against DoS Attacks -- 11.4.4 Defenses Against Aggregation Attacks -- 11.4.5 Defenses Against Routing Attacks -- 11.4.6 Security Protocols for Sensor Networks -- 11.4.7 TinySec -- 11.4.8 Localized Encryption and Authentication Protocol -- 11.5 IEEE 802.15.4 and ZigBee Security -- 11.6 Summary -- Exercises -- References