Deep Learning in Visual Computing and Signal Processing

Deep learning is a subfield of machine learning, which aims to learn a hierarchy of features from input data. Nowadays, researchers have intensively investigated deep learning algorithms for solving challenging problems in many areas such as image classification, speech recognition, signal processin...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Applied Computational Intelligence and Soft Computing Ročník 2017; číslo 2017; s. 4 - 16
Hlavní autoři: Xie, Danfeng, Bai, Li, Zhang, Lei
Médium: Journal Article
Jazyk:angličtina
Vydáno: Cairo, Egypt Hindawi Limiteds 01.01.2017
Hindawi Publishing Corporation
Hindawi
John Wiley & Sons, Inc
Wiley
Témata:
ISSN:1687-9724, 1687-9732
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Deep learning is a subfield of machine learning, which aims to learn a hierarchy of features from input data. Nowadays, researchers have intensively investigated deep learning algorithms for solving challenging problems in many areas such as image classification, speech recognition, signal processing, and natural language processing. In this study, we not only review typical deep learning algorithms in computer vision and signal processing but also provide detailed information on how to apply deep learning to specific areas such as road crack detection, fault diagnosis, and human activity detection. Besides, this study also discusses the challenges of designing and training deep neural networks.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:1687-9724
1687-9732
DOI:10.1155/2017/1320780