Primer, Pipelines, Parameters: Issues in 16S rRNA Gene Sequencing

In 16S rRNA gene sequencing, certain bacterial genera were found to be underrepresented or even missing in taxonomic profiles when using unsuitable primer combinations, outdated reference databases, or inadequate pipeline settings. Concerning the last, quality thresholds as well as bioinformatic set...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:mSphere Ročník 6; číslo 1
Hlavní autori: Abellan-Schneyder, Isabel, Matchado, Monica S., Reitmeier, Sandra, Sommer, Alina, Sewald, Zeno, Baumbach, Jan, List, Markus, Neuhaus, Klaus
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: United States American Society for Microbiology 24.02.2021
Predmet:
ISSN:2379-5042, 2379-5042
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract In 16S rRNA gene sequencing, certain bacterial genera were found to be underrepresented or even missing in taxonomic profiles when using unsuitable primer combinations, outdated reference databases, or inadequate pipeline settings. Concerning the last, quality thresholds as well as bioinformatic settings (i.e., clustering approach, analysis pipeline, and specific adjustments such as truncation) are responsible for a number of observed differences between studies. Short-amplicon 16S rRNA gene sequencing is currently the method of choice for studies investigating microbiomes. However, comparative studies on differences in procedures are scarce. We sequenced human stool samples and mock communities with increasing complexity using a variety of commonly used protocols. Short amplicons targeting different variable regions (V-regions) or ranges thereof (V1-V2, V1-V3, V3-V4, V4, V4-V5, V6-V8, and V7-V9) were investigated for differences in the composition outcome due to primer choices. Next, the influence of clustering (operational taxonomic units [OTUs], zero-radius OTUs [zOTUs], and amplicon sequence variants [ASVs]), different databases (GreenGenes, the Ribosomal Database Project, Silva, the genomic-based 16S rRNA Database, and The All-Species Living Tree), and bioinformatic settings on taxonomic assignment were also investigated. We present a systematic comparison across all typically used V-regions using well-established primers. While it is known that the primer choice has a significant influence on the resulting microbial composition, we show that microbial profiles generated using different primer pairs need independent validation of performance. Further, comparing data sets across V-regions using different databases might be misleading due to differences in nomenclature (e.g., Enterorhabdus versus Adlercreutzia ) and varying precisions in classification down to genus level. Overall, specific but important taxa are not picked up by certain primer pairs (e.g., Bacteroidetes is missed using primers 515F-944R) or due to the database used (e.g., Acetatifactor in GreenGenes and the genomic-based 16S rRNA Database). We found that appropriate truncation of amplicons is essential and different truncated-length combinations should be tested for each study. Finally, specific mock communities of sufficient and adequate complexity are highly recommended. IMPORTANCE In 16S rRNA gene sequencing, certain bacterial genera were found to be underrepresented or even missing in taxonomic profiles when using unsuitable primer combinations, outdated reference databases, or inadequate pipeline settings. Concerning the last, quality thresholds as well as bioinformatic settings (i.e., clustering approach, analysis pipeline, and specific adjustments such as truncation) are responsible for a number of observed differences between studies. Conclusions drawn by comparing one data set to another (e.g., between publications) appear to be problematic and require independent cross-validation using matching V-regions and uniform data processing. Therefore, we highlight the importance of a thought-out study design including sufficiently complex mock standards and appropriate V-region choice for the sample of interest. The use of processing pipelines and parameters must be tested beforehand.
AbstractList Short-amplicon 16S rRNA gene sequencing is currently the method of choice for studies investigating microbiomes. However, comparative studies on differences in procedures are scarce. We sequenced human stool samples and mock communities with increasing complexity using a variety of commonly used protocols. Short amplicons targeting different variable regions (V-regions) or ranges thereof (V1-V2, V1-V3, V3-V4, V4, V4-V5, V6-V8, and V7-V9) were investigated for differences in the composition outcome due to primer choices. Next, the influence of clustering (operational taxonomic units [OTUs], zero-radius OTUs [zOTUs], and amplicon sequence variants [ASVs]), different databases (GreenGenes, the Ribosomal Database Project, Silva, the genomic-based 16S rRNA Database, and The All-Species Living Tree), and bioinformatic settings on taxonomic assignment were also investigated. We present a systematic comparison across all typically used V-regions using well-established primers. While it is known that the primer choice has a significant influence on the resulting microbial composition, we show that microbial profiles generated using different primer pairs need independent validation of performance. Further, comparing data sets across V-regions using different databases might be misleading due to differences in nomenclature (e.g., Enterorhabdus versus Adlercreutzia) and varying precisions in classification down to genus level. Overall, specific but important taxa are not picked up by certain primer pairs (e.g., Bacteroidetes is missed using primers 515F-944R) or due to the database used (e.g., Acetatifactor in GreenGenes and the genomic-based 16S rRNA Database). We found that appropriate truncation of amplicons is essential and different truncated-length combinations should be tested for each study. Finally, specific mock communities of sufficient and adequate complexity are highly recommended. IMPORTANCE In 16S rRNA gene sequencing, certain bacterial genera were found to be underrepresented or even missing in taxonomic profiles when using unsuitable primer combinations, outdated reference databases, or inadequate pipeline settings. Concerning the last, quality thresholds as well as bioinformatic settings (i.e., clustering approach, analysis pipeline, and specific adjustments such as truncation) are responsible for a number of observed differences between studies. Conclusions drawn by comparing one data set to another (e.g., between publications) appear to be problematic and require independent cross-validation using matching V-regions and uniform data processing. Therefore, we highlight the importance of a thought-out study design including sufficiently complex mock standards and appropriate V-region choice for the sample of interest. The use of processing pipelines and parameters must be tested beforehand.
In 16S rRNA gene sequencing, certain bacterial genera were found to be underrepresented or even missing in taxonomic profiles when using unsuitable primer combinations, outdated reference databases, or inadequate pipeline settings. Concerning the last, quality thresholds as well as bioinformatic settings (i.e., clustering approach, analysis pipeline, and specific adjustments such as truncation) are responsible for a number of observed differences between studies.
In 16S rRNA gene sequencing, certain bacterial genera were found to be underrepresented or even missing in taxonomic profiles when using unsuitable primer combinations, outdated reference databases, or inadequate pipeline settings. Concerning the last, quality thresholds as well as bioinformatic settings (i.e., clustering approach, analysis pipeline, and specific adjustments such as truncation) are responsible for a number of observed differences between studies. Short-amplicon 16S rRNA gene sequencing is currently the method of choice for studies investigating microbiomes. However, comparative studies on differences in procedures are scarce. We sequenced human stool samples and mock communities with increasing complexity using a variety of commonly used protocols. Short amplicons targeting different variable regions (V-regions) or ranges thereof (V1-V2, V1-V3, V3-V4, V4, V4-V5, V6-V8, and V7-V9) were investigated for differences in the composition outcome due to primer choices. Next, the influence of clustering (operational taxonomic units [OTUs], zero-radius OTUs [zOTUs], and amplicon sequence variants [ASVs]), different databases (GreenGenes, the Ribosomal Database Project, Silva, the genomic-based 16S rRNA Database, and The All-Species Living Tree), and bioinformatic settings on taxonomic assignment were also investigated. We present a systematic comparison across all typically used V-regions using well-established primers. While it is known that the primer choice has a significant influence on the resulting microbial composition, we show that microbial profiles generated using different primer pairs need independent validation of performance. Further, comparing data sets across V-regions using different databases might be misleading due to differences in nomenclature (e.g., Enterorhabdus versus Adlercreutzia ) and varying precisions in classification down to genus level. Overall, specific but important taxa are not picked up by certain primer pairs (e.g., Bacteroidetes is missed using primers 515F-944R) or due to the database used (e.g., Acetatifactor in GreenGenes and the genomic-based 16S rRNA Database). We found that appropriate truncation of amplicons is essential and different truncated-length combinations should be tested for each study. Finally, specific mock communities of sufficient and adequate complexity are highly recommended. IMPORTANCE In 16S rRNA gene sequencing, certain bacterial genera were found to be underrepresented or even missing in taxonomic profiles when using unsuitable primer combinations, outdated reference databases, or inadequate pipeline settings. Concerning the last, quality thresholds as well as bioinformatic settings (i.e., clustering approach, analysis pipeline, and specific adjustments such as truncation) are responsible for a number of observed differences between studies. Conclusions drawn by comparing one data set to another (e.g., between publications) appear to be problematic and require independent cross-validation using matching V-regions and uniform data processing. Therefore, we highlight the importance of a thought-out study design including sufficiently complex mock standards and appropriate V-region choice for the sample of interest. The use of processing pipelines and parameters must be tested beforehand.
Short-amplicon 16S rRNA gene sequencing is currently the method of choice for studies investigating microbiomes. However, comparative studies on differences in procedures are scarce. We sequenced human stool samples and mock communities with increasing complexity using a variety of commonly used protocols. Short amplicons targeting different variable regions (V-regions) or ranges thereof (V1-V2, V1-V3, V3-V4, V4, V4-V5, V6-V8, and V7-V9) were investigated for differences in the composition outcome due to primer choices. Next, the influence of clustering (operational taxonomic units [OTUs], zero-radius OTUs [zOTUs], and amplicon sequence variants [ASVs]), different databases (GreenGenes, the Ribosomal Database Project, Silva, the genomic-based 16S rRNA Database, and The All-Species Living Tree), and bioinformatic settings on taxonomic assignment were also investigated. We present a systematic comparison across all typically used V-regions using well-established primers. While it is known that the primer choice has a significant influence on the resulting microbial composition, we show that microbial profiles generated using different primer pairs need independent validation of performance. Further, comparing data sets across V-regions using different databases might be misleading due to differences in nomenclature (e.g., Enterorhabdus versus Adlercreutzia) and varying precisions in classification down to genus level. Overall, specific but important taxa are not picked up by certain primer pairs (e.g., Bacteroidetes is missed using primers 515F-944R) or due to the database used (e.g., Acetatifactor in GreenGenes and the genomic-based 16S rRNA Database). We found that appropriate truncation of amplicons is essential and different truncated-length combinations should be tested for each study. Finally, specific mock communities of sufficient and adequate complexity are highly recommended.IMPORTANCE In 16S rRNA gene sequencing, certain bacterial genera were found to be underrepresented or even missing in taxonomic profiles when using unsuitable primer combinations, outdated reference databases, or inadequate pipeline settings. Concerning the last, quality thresholds as well as bioinformatic settings (i.e., clustering approach, analysis pipeline, and specific adjustments such as truncation) are responsible for a number of observed differences between studies. Conclusions drawn by comparing one data set to another (e.g., between publications) appear to be problematic and require independent cross-validation using matching V-regions and uniform data processing. Therefore, we highlight the importance of a thought-out study design including sufficiently complex mock standards and appropriate V-region choice for the sample of interest. The use of processing pipelines and parameters must be tested beforehand.Short-amplicon 16S rRNA gene sequencing is currently the method of choice for studies investigating microbiomes. However, comparative studies on differences in procedures are scarce. We sequenced human stool samples and mock communities with increasing complexity using a variety of commonly used protocols. Short amplicons targeting different variable regions (V-regions) or ranges thereof (V1-V2, V1-V3, V3-V4, V4, V4-V5, V6-V8, and V7-V9) were investigated for differences in the composition outcome due to primer choices. Next, the influence of clustering (operational taxonomic units [OTUs], zero-radius OTUs [zOTUs], and amplicon sequence variants [ASVs]), different databases (GreenGenes, the Ribosomal Database Project, Silva, the genomic-based 16S rRNA Database, and The All-Species Living Tree), and bioinformatic settings on taxonomic assignment were also investigated. We present a systematic comparison across all typically used V-regions using well-established primers. While it is known that the primer choice has a significant influence on the resulting microbial composition, we show that microbial profiles generated using different primer pairs need independent validation of performance. Further, comparing data sets across V-regions using different databases might be misleading due to differences in nomenclature (e.g., Enterorhabdus versus Adlercreutzia) and varying precisions in classification down to genus level. Overall, specific but important taxa are not picked up by certain primer pairs (e.g., Bacteroidetes is missed using primers 515F-944R) or due to the database used (e.g., Acetatifactor in GreenGenes and the genomic-based 16S rRNA Database). We found that appropriate truncation of amplicons is essential and different truncated-length combinations should be tested for each study. Finally, specific mock communities of sufficient and adequate complexity are highly recommended.IMPORTANCE In 16S rRNA gene sequencing, certain bacterial genera were found to be underrepresented or even missing in taxonomic profiles when using unsuitable primer combinations, outdated reference databases, or inadequate pipeline settings. Concerning the last, quality thresholds as well as bioinformatic settings (i.e., clustering approach, analysis pipeline, and specific adjustments such as truncation) are responsible for a number of observed differences between studies. Conclusions drawn by comparing one data set to another (e.g., between publications) appear to be problematic and require independent cross-validation using matching V-regions and uniform data processing. Therefore, we highlight the importance of a thought-out study design including sufficiently complex mock standards and appropriate V-region choice for the sample of interest. The use of processing pipelines and parameters must be tested beforehand.
Short-amplicon 16S rRNA gene sequencing is currently the method of choice for studies investigating microbiomes. However, comparative studies on differences in procedures are scarce. We sequenced human stool samples and mock communities with increasing complexity using a variety of commonly used protocols. Short amplicons targeting different variable regions (V-regions) or ranges thereof (V1-V2, V1-V3, V3-V4, V4, V4-V5, V6-V8, and V7-V9) were investigated for differences in the composition outcome due to primer choices. Next, the influence of clustering (operational taxonomic units [OTUs], zero-radius OTUs [zOTUs], and amplicon sequence variants [ASVs]), different databases (GreenGenes, the Ribosomal Database Project, Silva, the genomic-based 16S rRNA Database, and The All-Species Living Tree), and bioinformatic settings on taxonomic assignment were also investigated. We present a systematic comparison across all typically used V-regions using well-established primers. While it is known that the primer choice has a significant influence on the resulting microbial composition, we show that microbial profiles generated using different primer pairs need independent validation of performance. Further, comparing data sets across V-regions using different databases might be misleading due to differences in nomenclature (e.g., versus ) and varying precisions in classification down to genus level. Overall, specific but important taxa are not picked up by certain primer pairs (e.g., is missed using primers 515F-944R) or due to the database used (e.g., in GreenGenes and the genomic-based 16S rRNA Database). We found that appropriate truncation of amplicons is essential and different truncated-length combinations should be tested for each study. Finally, specific mock communities of sufficient and adequate complexity are highly recommended. In 16S rRNA gene sequencing, certain bacterial genera were found to be underrepresented or even missing in taxonomic profiles when using unsuitable primer combinations, outdated reference databases, or inadequate pipeline settings. Concerning the last, quality thresholds as well as bioinformatic settings (i.e., clustering approach, analysis pipeline, and specific adjustments such as truncation) are responsible for a number of observed differences between studies. Conclusions drawn by comparing one data set to another (e.g., between publications) appear to be problematic and require independent cross-validation using matching V-regions and uniform data processing. Therefore, we highlight the importance of a thought-out study design including sufficiently complex mock standards and appropriate V-region choice for the sample of interest. The use of processing pipelines and parameters must be tested beforehand.
Author Sewald, Zeno
Matchado, Monica S.
Sommer, Alina
Neuhaus, Klaus
Abellan-Schneyder, Isabel
List, Markus
Baumbach, Jan
Reitmeier, Sandra
Author_xml – sequence: 1
  givenname: Isabel
  surname: Abellan-Schneyder
  fullname: Abellan-Schneyder, Isabel
  organization: Core Facility Microbiome, ZIEL—Institute for Food & Health, Technische Universität München, Freising, Germany
– sequence: 2
  givenname: Monica S.
  orcidid: 0000-0002-2058-7924
  surname: Matchado
  fullname: Matchado, Monica S.
  organization: Chair of Experimental Bioinformatics, TUM School of Life Sciences Weihenstephan, Technische Universität München, Freising, Germany
– sequence: 3
  givenname: Sandra
  surname: Reitmeier
  fullname: Reitmeier, Sandra
  organization: Core Facility Microbiome, ZIEL—Institute for Food & Health, Technische Universität München, Freising, Germany
– sequence: 4
  givenname: Alina
  surname: Sommer
  fullname: Sommer, Alina
  organization: Core Facility Microbiome, ZIEL—Institute for Food & Health, Technische Universität München, Freising, Germany
– sequence: 5
  givenname: Zeno
  surname: Sewald
  fullname: Sewald, Zeno
  organization: Core Facility Microbiome, ZIEL—Institute for Food & Health, Technische Universität München, Freising, Germany
– sequence: 6
  givenname: Jan
  surname: Baumbach
  fullname: Baumbach, Jan
  organization: Chair of Experimental Bioinformatics, TUM School of Life Sciences Weihenstephan, Technische Universität München, Freising, Germany, Computational Biomedicine Lab, Department of Mathematics and Computer Science, University of Southern Denmark, Odense, Denmark, Chair of Computational Systems Biology, University of Hamburg, Hamburg, Germany
– sequence: 7
  givenname: Markus
  orcidid: 0000-0002-0941-4168
  surname: List
  fullname: List, Markus
  organization: Chair of Experimental Bioinformatics, TUM School of Life Sciences Weihenstephan, Technische Universität München, Freising, Germany
– sequence: 8
  givenname: Klaus
  orcidid: 0000-0002-6020-2814
  surname: Neuhaus
  fullname: Neuhaus, Klaus
  organization: Core Facility Microbiome, ZIEL—Institute for Food & Health, Technische Universität München, Freising, Germany
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33627512$$D View this record in MEDLINE/PubMed
BookMark eNp9kc1v1DAQxS1URMvSOyeUIwdS_G2HA9KqgrJSBRULZ8txJluvEnuxEyT-e7zdLWqR4DSj8Zufn-Y9RychBkDoJcEXhFD9dlzvbiHBBSYU05riJ-iMMtXUAnN68qA_Rec5bzHGRFIplXyGThmTVAlCz9DyJvkR0pvqxu9g8AFyaW2yI0yQ8rtqlfMMufKhInJdpa-fl9UVBKjW8GOG4HzYvEBPeztkOD_WBfr-8cO3y0_19Zer1eXyurZCyql2LQjNSNs54FYxoNo2fUs6pylxWDgNvBfaic62je6ktrJXmDai2MRcgWYLtDpwu2i3Zlds2_TLROvN3SCmjbFp8m4A02jMG8EsA8a4ZNyCZUwrQjmjulG8sN4fWLu5HaFYClOywyPo45fgb80m_jRacK4LeoFeHwEplkPkyYw-OxgGGyDO2VDeMC4UEfu_6oPU5pGabZxTKGcyBJt9iuaYorlL0VBc9K8eevtj6j6zIpAHgUsx5wS9cX6yk497q374Hxn_tXjP_ufKbyG4uxs
CitedBy_id crossref_primary_10_1128_aem_02108_22
crossref_primary_10_3389_fmicb_2024_1437098
crossref_primary_10_1055_s_0044_1779025
crossref_primary_10_3748_wjg_v29_i6_967
crossref_primary_10_1016_j_csbj_2025_03_030
crossref_primary_10_3390_ijms26168090
crossref_primary_10_3390_fermentation9100911
crossref_primary_10_1016_j_jece_2025_119246
crossref_primary_10_3389_fmicb_2025_1633360
crossref_primary_10_1007_s43657_024_00164_y
crossref_primary_10_1093_nutrit_nuad093
crossref_primary_10_1016_j_cbd_2025_101628
crossref_primary_10_1186_s40793_024_00578_1
crossref_primary_10_4014_jmb_2412_12001
crossref_primary_10_1007_s12088_021_00962_2
crossref_primary_10_70389_PJSPS_100002
crossref_primary_10_1002_ieam_4812
crossref_primary_10_1089_fpd_2022_0027
crossref_primary_10_3389_fmars_2023_1199116
crossref_primary_10_1016_j_neuropharm_2022_109318
crossref_primary_10_1128_aem_00987_24
crossref_primary_10_1038_s41522_024_00641_2
crossref_primary_10_1016_j_ecss_2025_109485
crossref_primary_10_1093_advances_nmac099
crossref_primary_10_3389_fmicb_2025_1558379
crossref_primary_10_1016_j_jhazmat_2025_138639
crossref_primary_10_24072_pcjournal_2
crossref_primary_10_1016_j_egg_2023_100206
crossref_primary_10_30699_ijmm_18_2_80
crossref_primary_10_3389_fmicb_2024_1324188
crossref_primary_10_3389_fmicb_2025_1553124
crossref_primary_10_1016_j_foodcont_2025_111518
crossref_primary_10_3390_fib12030029
crossref_primary_10_1016_j_ijfoodmicro_2023_110523
crossref_primary_10_1016_j_isci_2025_112208
crossref_primary_10_1111_jmp_12732
crossref_primary_10_36233_0372_9311_629
crossref_primary_10_70389_PJSPS_100012
crossref_primary_10_3390_ijms26031180
crossref_primary_10_1155_ijm_7563096
crossref_primary_10_1186_s40168_024_01890_1
crossref_primary_10_1099_mgen_0_001203
crossref_primary_10_1128_spectrum_02017_21
crossref_primary_10_3390_foods12112105
crossref_primary_10_1098_rsos_230963
crossref_primary_10_3389_fcimb_2024_1411482
crossref_primary_10_3389_fmicb_2025_1580531
crossref_primary_10_3389_fcimb_2021_770668
crossref_primary_10_1007_s00284_022_02956_9
crossref_primary_10_3389_fmicb_2023_1263731
crossref_primary_10_1016_j_euroneuro_2024_07_004
crossref_primary_10_1007_s11912_024_01520_x
crossref_primary_10_3390_microorganisms9061251
crossref_primary_10_1177_00220345241303880
crossref_primary_10_3390_pathogens13100826
crossref_primary_10_1016_j_pnpbp_2025_111454
crossref_primary_10_5582_bst_2024_01393
crossref_primary_10_1007_s10529_024_03509_9
crossref_primary_10_1371_journal_pone_0301016
crossref_primary_10_1038_s41598_023_36533_2
crossref_primary_10_1016_j_heliyon_2022_e09693
crossref_primary_10_1016_j_aquatox_2025_107351
crossref_primary_10_3389_fmicb_2024_1504444
crossref_primary_10_3390_microorganisms11040955
crossref_primary_10_1186_s40517_023_00269_z
crossref_primary_10_1007_s00414_024_03383_0
crossref_primary_10_1016_j_ecolind_2025_113351
crossref_primary_10_1038_s41598_022_13871_1
crossref_primary_10_1016_j_resmic_2022_103936
crossref_primary_10_1128_msystems_00950_23
crossref_primary_10_1038_s41598_022_14925_0
crossref_primary_10_3389_fmicb_2022_969757
crossref_primary_10_3389_fmicb_2023_1197837
crossref_primary_10_1016_j_hal_2024_102580
crossref_primary_10_3389_fmicb_2023_1201064
crossref_primary_10_1128_msystems_01358_24
crossref_primary_10_1016_j_tplants_2024_12_002
crossref_primary_10_3389_fmicb_2025_1481197
crossref_primary_10_3390_microorganisms10091763
crossref_primary_10_3389_fcimb_2021_723821
crossref_primary_10_3390_f14091848
crossref_primary_10_1128_aem_00453_22
crossref_primary_10_1016_j_scitotenv_2023_164797
crossref_primary_10_3389_fmicb_2024_1454910
crossref_primary_10_1186_s40168_024_01769_1
crossref_primary_10_1016_j_heliyon_2024_e38846
crossref_primary_10_3390_life14101219
crossref_primary_10_3390_microorganisms11010211
crossref_primary_10_4142_jvs_24181
crossref_primary_10_1128_aem_01871_24
crossref_primary_10_1016_j_jenvman_2024_122136
crossref_primary_10_1089_cmb_2024_0615
crossref_primary_10_3389_fendo_2024_1344152
crossref_primary_10_7717_peerj_18099
crossref_primary_10_3390_cancers15205045
crossref_primary_10_1128_aem_00966_25
crossref_primary_10_3389_fmicb_2024_1498681
crossref_primary_10_1002_ame2_12202
crossref_primary_10_1080_15257770_2025_2479620
crossref_primary_10_1097_MD_0000000000034978
crossref_primary_10_1007_s00248_024_02408_w
crossref_primary_10_1016_j_kjs_2024_100309
crossref_primary_10_1007_s10811_025_03455_7
crossref_primary_10_1186_s12879_025_10825_6
crossref_primary_10_1111_gfs_12725
crossref_primary_10_3390_biomedicines12102409
crossref_primary_10_1007_s00248_025_02491_7
crossref_primary_10_1016_j_jwpe_2024_104850
crossref_primary_10_1038_s41598_025_14230_6
crossref_primary_10_1038_s41598_024_83410_7
crossref_primary_10_1093_ismejo_wrae092
crossref_primary_10_1038_s41598_023_46062_7
crossref_primary_10_3390_ijms26104690
crossref_primary_10_1002_2211_5463_13869
crossref_primary_10_3390_biology14010029
crossref_primary_10_1016_j_fsi_2025_110394
crossref_primary_10_1128_msystems_00399_24
crossref_primary_10_1016_j_expneurol_2025_115406
crossref_primary_10_1016_j_ebiom_2024_105362
crossref_primary_10_3389_fmars_2025_1587729
crossref_primary_10_1128_aem_00524_25
crossref_primary_10_3390_microorganisms10101961
crossref_primary_10_1007_s00604_025_07159_0
crossref_primary_10_1016_j_ecoenv_2024_116226
crossref_primary_10_1128_msystems_00518_21
crossref_primary_10_3390_life12020221
crossref_primary_10_3390_fermentation10100529
crossref_primary_10_1128_spectrum_00931_24
crossref_primary_10_1016_j_marpolbul_2025_118489
crossref_primary_10_1007_s00203_022_03207_y
crossref_primary_10_1007_s11894_024_00932_w
crossref_primary_10_1016_j_fbio_2022_102308
crossref_primary_10_1093_ismeco_ycaf094
crossref_primary_10_1016_j_csbj_2025_08_015
crossref_primary_10_3390_genes13122280
crossref_primary_10_3390_plants12213678
crossref_primary_10_1016_j_clnesp_2025_08_008
crossref_primary_10_3389_frmbi_2025_1657750
crossref_primary_10_1128_jcm_00837_22
crossref_primary_10_1016_j_micres_2025_128325
crossref_primary_10_1111_mec_16285
crossref_primary_10_4081_ijfs_2025_13171
crossref_primary_10_1016_j_jenvman_2025_127000
crossref_primary_10_3390_horticulturae8080752
crossref_primary_10_2903_sp_efsa_2024_EN_8602
crossref_primary_10_3390_microorganisms13081861
crossref_primary_10_3390_diagnostics13172835
crossref_primary_10_1002_imo2_9
crossref_primary_10_1128_spectrum_04048_22
crossref_primary_10_1038_s41564_022_01121_z
crossref_primary_10_1038_s43705_023_00325_6
crossref_primary_10_3390_cancers14246096
crossref_primary_10_1126_science_adk4271
crossref_primary_10_1128_spectrum_03512_23
crossref_primary_10_3390_microorganisms12112119
crossref_primary_10_1128_spectrum_01176_23
crossref_primary_10_1371_journal_pone_0324351
crossref_primary_10_3389_fmicb_2021_644662
crossref_primary_10_3390_ijms24021100
crossref_primary_10_1016_j_critrevonc_2024_104545
crossref_primary_10_23736_S2724_5985_24_03799_9
crossref_primary_10_4014_jmb_2406_06048
crossref_primary_10_3389_fcimb_2024_1413018
crossref_primary_10_1016_j_tifs_2025_105113
crossref_primary_10_3389_fmicb_2025_1599847
crossref_primary_10_1128_cmr_00060_22
crossref_primary_10_1038_s41433_024_03589_x
crossref_primary_10_3389_fcimb_2025_1512891
crossref_primary_10_1016_j_gastha_2023_03_003
crossref_primary_10_38211_jms_2025_04_84
crossref_primary_10_1002_eji_202350503
crossref_primary_10_3389_fmicb_2023_1215236
crossref_primary_10_3390_ani13193107
crossref_primary_10_1016_j_psyneuen_2024_107208
crossref_primary_10_1016_j_rhisph_2023_100752
crossref_primary_10_1016_j_apsoil_2024_105570
crossref_primary_10_3390_pathogens12030488
crossref_primary_10_3389_fped_2022_886627
crossref_primary_10_1016_j_jenvman_2025_126196
crossref_primary_10_3390_ijms24119307
crossref_primary_10_1016_j_micpath_2024_106889
crossref_primary_10_1039_D5EW00091B
crossref_primary_10_1016_j_jece_2025_118642
crossref_primary_10_1128_spectrum_00798_21
crossref_primary_10_48022_mbl_2112_12005
crossref_primary_10_1111_exd_14951
crossref_primary_10_1186_s40168_024_01802_3
crossref_primary_10_14293_NSM_25_1_0004
crossref_primary_10_1186_s42523_025_00429_5
crossref_primary_10_1080_00207454_2025_2529238
crossref_primary_10_1080_19490976_2025_2516699
crossref_primary_10_1128_aem_01537_24
crossref_primary_10_1038_s42003_024_07158_6
crossref_primary_10_1073_pnas_2104429118
crossref_primary_10_1111_1758_2229_13145
crossref_primary_10_1016_j_theriogenology_2023_09_016
crossref_primary_10_3389_fphar_2025_1597564
crossref_primary_10_1128_spectrum_00583_25
crossref_primary_10_1016_j_envpol_2023_122215
crossref_primary_10_1186_s40168_024_01812_1
crossref_primary_10_1038_s41598_023_48804_z
crossref_primary_10_1159_000534284
crossref_primary_10_3390_microorganisms13010016
crossref_primary_10_3389_fmicb_2022_875930
crossref_primary_10_1016_j_ejps_2025_107153
crossref_primary_10_1186_s40793_024_00592_3
crossref_primary_10_3389_fmicb_2024_1519733
crossref_primary_10_3390_microorganisms11071633
crossref_primary_10_1080_07060661_2023_2290041
crossref_primary_10_1186_s12866_025_03869_w
crossref_primary_10_1038_s41522_025_00686_x
crossref_primary_10_1099_jmm_0_001756
crossref_primary_10_1186_s12866_021_02391_z
crossref_primary_10_1039_D2FO01619B
crossref_primary_10_1016_j_jenvman_2025_126778
crossref_primary_10_1002_cam4_6298
crossref_primary_10_3390_microorganisms10081671
crossref_primary_10_3390_cells10113226
Cites_doi 10.3389/fmicb.2017.00494
10.1128/mSphere.00410-18
10.1371/journal.pone.0039315
10.1128/AEM.01541-09
10.3390/genes11080878
10.1038/nature11209
10.1158/1055-9965.EPI-15-0951
10.1186/s12864-017-3501-4
10.1128/mSystems.00023-18
10.1111/1462-2920.13023
10.1016/j.mimet.2019.105811
10.1073/pnas.87.12.4576
10.1038/s41467-019-13036-1
10.3389/fmicb.2020.00972
10.1016/j.ijmm.2016.03.005
10.1111/1758-2229.12684
10.1371/journal.pone.0094249
10.1016/j.mimet.2003.08.009
10.3389/fmicb.2016.01297
10.1038/s41587-019-0209-9
10.3389/fmicb.2015.00771
10.1371/journal.pone.0076431
10.1038/s41467-019-09637-5
10.1186/s13059-015-0841-8
10.1093/bioinformatics/btq461
10.1016/j.xpro.2020.100148
10.1093/nar/gks808
10.7717/peerj.2836
10.1016/j.ijfoodmicro.2017.10.028
10.1128/AEM.03006-05
10.1186/s12864-017-4229-x
10.1038/s41598-019-53599-z
10.3389/fmicb.2019.01606
10.1016/j.syapm.2008.07.001
10.1038/ismej.2017.119
10.1186/s12864-015-2194-9
10.1073/pnas.1519288112
10.1016/j.jid.2016.01.016
10.1038/nmeth.2604
10.1111/1462-2920.14636
10.3389/fmicb.2018.02140
10.1186/s13742-016-0111-z
10.1038/nmeth.3869
10.1038/nbt.3601
10.14806/ej.17.1.200
10.1186/s12859-016-0992-y
10.1093/bioinformatics/bty113
10.1038/s41598-018-34294-x
10.1093/nar/gkt1244
10.1002/2211-5463.12590
10.1111/j.1365-294X.2012.05538.x
10.1128/IAI.00493-09
10.1101/gr.085464.108
10.1128/AEM.63.7.2802-2813.1997
10.3748/wjg.v16.i33.4135
10.1128/mBio.01557-20
10.3389/fmicb.2019.02796
10.1016/j.cell.2014.09.048
10.3389/fmicb.2020.01262
10.1128/AEM.01043-13
10.1038/nbt.4045
10.1371/journal.pone.0227434
10.1038/s41467-017-01973-8
10.1128/mSystems.00163-18
10.1371/journal.pone.0148047
10.1186/s40168-019-0743-1
10.1101/081257
10.1128/AEM.05220-11
10.1186/s40168-018-0470-z
10.1371/journal.pone.0134802
10.1038/nbt.1495
10.1128/AEM.01368-19
10.3389/fgene.2019.00653
10.1093/nar/gkm541
10.1073/pnas.1000080107
10.1093/nar/gks1219
10.1038/srep16350
10.5808/GI.2018.16.4.e24
10.1371/journal.pone.0119355
10.1016/j.anaerobe.2014.04.006
10.1371/journal.pone.0071360
10.1128/JCM.01228-07
10.1016/j.gpb.2015.08.002
10.1038/nbt.3960
10.1038/s41598-019-45173-4
10.1186/s40168-017-0396-x
10.1093/nar/29.1.181
10.1099/ijsem.0.001755
10.1186/s12915-014-0087-z
10.1111/jam.14608
10.4172/jpb.1000381
10.1016/j.chom.2020.06.004
10.1186/s40168-015-0087-4
10.1111/j.1550-7408.1999.tb04612.x
10.1128/mSystems.00062-16
10.1128/mSystems.00547-19
10.1126/science.1162986
10.1038/s41598-018-22491-7
10.1128/AEM.00062-07
10.1016/j.heliyon.2017.e00370
10.1038/nbt.3981
10.1093/gigascience/giy054
10.1186/s40168-020-00841-w
10.7717/peerj.3036
10.1093/nar/gkz569
10.12688/f1000research.16817.2
10.1016/j.rsma.2018.100485
10.1038/nmicrobiol.2016.160
10.1128/mSystems.00290-19
10.1038/s41598-018-30515-5
10.1038/s41587-020-0439-x
10.1016/j.chom.2016.04.017
10.1371/journal.pone.0006669
10.1038/nmeth.f.303
10.1038/sdata.2019.7
ContentType Journal Article
Copyright Copyright © 2021 Abellan-Schneyder et al.
Copyright © 2021 Abellan-Schneyder et al. 2021 Abellan-Schneyder et al.
Copyright_xml – notice: Copyright © 2021 Abellan-Schneyder et al.
– notice: Copyright © 2021 Abellan-Schneyder et al. 2021 Abellan-Schneyder et al.
DBID AAYXX
CITATION
NPM
7X8
5PM
DOA
DOI 10.1128/mSphere.01202-20
DatabaseName CrossRef
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList

CrossRef
MEDLINE - Academic
PubMed

Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2379-5042
Editor Tringe, Susannah Green
Editor_xml – sequence: 1
  givenname: Susannah Green
  surname: Tringe
  fullname: Tringe, Susannah Green
ExternalDocumentID oai_doaj_org_article_9804953a3e334634aea3387124328974
PMC8544895
mSphere01202-20
33627512
10_1128_mSphere_01202_20
Genre Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Research Foundation of Dairy Science at TUM
  grantid: Research grant
– fundername: VILLUM Young Investigator Grant
  grantid: 13154
– fundername: ZIEL - Institute for Food & Health
  grantid: Doctorate position grant
– fundername: German Science Foundation
  grantid: SFB1371
– fundername: ;
  grantid: Research grant
– fundername: ;
  grantid: 13154
– fundername: ;
  grantid: Doctorate position grant
– fundername: ;
  grantid: SFB1371
GroupedDBID 0R~
53G
5VS
7X7
8FE
8FH
8FI
8FJ
AAFWJ
AAGFI
AAUOK
AAYXX
ABUWG
ADBBV
AFFHD
AFKRA
AFPKN
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
CCPQU
CITATION
DIK
EBS
FRP
FYUFA
GROUPED_DOAJ
H13
HCIFZ
HMCUK
HYE
KQ8
LK8
M48
M7P
M~E
O9-
OK1
PGMZT
PHGZM
PHGZT
PIMPY
PQGLB
PQQKQ
PROAC
R9-
RHI
RPM
RSF
UKHRP
3V.
ALIPV
NPM
RHF
0R
ADACO
BBAFP
BXI
PQEST
PQUKI
PRINS
7X8
5PM
ID FETCH-LOGICAL-a566t-cbe5831bdce4a73e28a9fb1dc821c05c8e4f58c5dab98d68a6f70295751047e83
IEDL.DBID DOA
ISICitedReferencesCount 290
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000647699800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2379-5042
IngestDate Fri Oct 03 12:50:21 EDT 2025
Tue Nov 04 01:48:11 EST 2025
Sun Nov 09 11:27:32 EST 2025
Tue Dec 28 13:59:22 EST 2021
Thu Jan 02 22:57:12 EST 2025
Sat Nov 29 03:33:47 EST 2025
Tue Nov 18 22:14:28 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords databases
variable regions
bioinformatic settings
mock communities
16S rRNA gene sequencing
amplicon sequencing
clustering
microbiome
Language English
License Copyright © 2021 Abellan-Schneyder et al.
This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International license. https://creativecommons.org/licenses/by/4.0
This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International license.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a566t-cbe5831bdce4a73e28a9fb1dc821c05c8e4f58c5dab98d68a6f70295751047e83
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Citation Abellan-Schneyder I, Matchado MS, Reitmeier S, Sommer A, Sewald Z, Baumbach J, List M, Neuhaus K. 2021. Primer, pipelines, parameters: issues in 16S rRNA gene sequencing. mSphere 6:e01202-20. https://doi.org/10.1128/mSphere.01202-20.
ORCID 0000-0002-6020-2814
0000-0002-2058-7924
0000-0002-0941-4168
OpenAccessLink https://doaj.org/article/9804953a3e334634aea3387124328974
PMID 33627512
PQID 2493457154
PQPubID 23479
PageCount 22
ParticipantIDs doaj_primary_oai_doaj_org_article_9804953a3e334634aea3387124328974
pubmedcentral_primary_oai_pubmedcentral_nih_gov_8544895
proquest_miscellaneous_2493457154
asm2_journals_10_1128_mSphere_01202_20
pubmed_primary_33627512
crossref_citationtrail_10_1128_mSphere_01202_20
crossref_primary_10_1128_mSphere_01202_20
PublicationCentury 2000
PublicationDate 20210224
PublicationDateYYYYMMDD 2021-02-24
PublicationDate_xml – month: 2
  year: 2021
  text: 20210224
  day: 24
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: 1752 N St., N.W., Washington, DC
PublicationTitle mSphere
PublicationTitleAbbrev mSphere
PublicationTitleAlternate mSphere
PublicationYear 2021
Publisher American Society for Microbiology
Publisher_xml – name: American Society for Microbiology
References e_1_3_2_28_2
e_1_3_2_20_2
e_1_3_2_43_2
e_1_3_2_62_2
e_1_3_2_85_2
e_1_3_2_24_2
e_1_3_2_47_2
e_1_3_2_66_2
e_1_3_2_89_2
e_1_3_2_100_2
e_1_3_2_104_2
e_1_3_2_81_2
e_1_3_2_108_2
e_1_3_2_16_2
e_1_3_2_7_2
e_1_3_2_39_2
e_1_3_2_54_2
e_1_3_2_31_2
e_1_3_2_73_2
e_1_3_2_12_2
e_1_3_2_58_2
e_1_3_2_96_2
e_1_3_2_3_2
e_1_3_2_35_2
e_1_3_2_77_2
e_1_3_2_112_2
e_1_3_2_92_2
e_1_3_2_50_2
e_1_3_2_116_2
e_1_3_2_48_2
e_1_3_2_29_2
e_1_3_2_40_2
e_1_3_2_86_2
e_1_3_2_21_2
e_1_3_2_63_2
e_1_3_2_44_2
e_1_3_2_25_2
e_1_3_2_67_2
e_1_3_2_82_2
e_1_3_2_103_2
e_1_3_2_107_2
e_1_3_2_17_2
e_1_3_2_59_2
e_1_3_2_6_2
e_1_3_2_32_2
e_1_3_2_51_2
e_1_3_2_74_2
e_1_3_2_13_2
e_1_3_2_36_2
e_1_3_2_55_2
e_1_3_2_78_2
e_1_3_2_97_2
e_1_3_2_2_2
e_1_3_2_93_2
e_1_3_2_115_2
e_1_3_2_70_2
e_1_3_2_111_2
e_1_3_2_119_2
e_1_3_2_26_2
e_1_3_2_49_2
e_1_3_2_41_2
e_1_3_2_64_2
e_1_3_2_87_2
e_1_3_2_22_2
e_1_3_2_45_2
e_1_3_2_68_2
e_1_3_2_60_2
e_1_3_2_83_2
e_1_3_2_102_2
e_1_3_2_106_2
e_1_3_2_9_2
e_1_3_2_37_2
e_1_3_2_18_2
e_1_3_2_75_2
e_1_3_2_10_2
e_1_3_2_52_2
e_1_3_2_5_2
e_1_3_2_33_2
e_1_3_2_79_2
e_1_3_2_14_2
e_1_3_2_56_2
e_1_3_2_98_2
e_1_3_2_114_2
e_1_3_2_94_2
e_1_3_2_71_2
e_1_3_2_110_2
e_1_3_2_90_2
e_1_3_2_118_2
e_1_3_2_27_2
e_1_3_2_65_2
e_1_3_2_42_2
e_1_3_2_84_2
e_1_3_2_23_2
e_1_3_2_69_2
e_1_3_2_46_2
e_1_3_2_88_2
e_1_3_2_61_2
e_1_3_2_120_2
e_1_3_2_80_2
e_1_3_2_101_2
e_1_3_2_109_2
e_1_3_2_105_2
e_1_3_2_15_2
e_1_3_2_38_2
e_1_3_2_8_2
e_1_3_2_19_2
Shah M (e_1_3_2_91_2) 2014; 2
e_1_3_2_30_2
e_1_3_2_53_2
e_1_3_2_76_2
e_1_3_2_99_2
e_1_3_2_11_2
e_1_3_2_34_2
e_1_3_2_57_2
e_1_3_2_95_2
e_1_3_2_4_2
e_1_3_2_113_2
e_1_3_2_72_2
e_1_3_2_117_2
Johnson, JS, Spakowicz, DJ, Hong, BY, Petersen, LM, Demkowicz, P, Chen, L, Leopold, SR, Hanson, BM, Agresta, HO, Gerstein, M, Sodergren, E, Weinstock, GM (B27) 2019; 10
Bolyen, E, Rideout, JR, Dillon, MR, Bokulich, NA, Abnet, CC, Al-Ghalith, GA, Alexander, H, Alm, EJ, Arumugam, M, Asnicar, F, Bai, Y, Bisanz, JE, Bittinger, K, Brejnrod, A, Brislawn, CJ, Brown, CT, Callahan, BJ, Caraballo-Rodríguez, AM, Chase, J, Cope, EK, Da Silva, R, Diener, C, Dorrestein, PC, Douglas, GM, Durall, DM, Duvallet, C, Edwardson, CF, Ernst, M, Estaki, M, Fouquier, J, Gauglitz, JM, Gibbons, SM, Gibson, DL, Gonzalez, A, Gorlick, K, Guo, J, Hillmann, B, Holmes, S, Holste, H, Huttenhower, C, Huttley, GA, Janssen, S, Jarmusch, AK, Jiang, L, Kaehler, BD, Kang, KB, Keefe, CR, Keim, P, Kelley, ST, Knights, D (B47) 2019; 37
Loit, K, Adamson, K, Bahram, M, Puusepp, R, Anslan, S, Kiiker, R, Drenkhan, R, Tedersoo, L (B96) 2019; 85
Fuks, G, Elgart, M, Amir, A, Zeisel, A, Turnbaugh, PJ, Soen, Y, Shental, N (B117) 2018; 6
Alcon-Giner, C, Caim, S, Mitra, S, Ketskemety, J, Wegmann, U, Wain, J, Belteki, G, Clarke, P, Hall, LJ (B31) 2017; 18
Prodan, A, Tremaroli, V, Brolin, H, Zwinderman, AH, Nieuwdorp, M, Levin, E (B42) 2020; 15
De Filippis, F, Parente, E, Zotta, T, Ercolini, D (B87) 2018; 265
Bailén, M, Bressa, C, Larrosa, M, González-Soltero, R (B56) 2020; 169
Edgar, RC (B49) 2018; 34
Caporaso, JG, Lauber, CL, Walters, WA, Berg-Lyons, D, Lozupone, CA, Turnbaugh, PJ, Fierer, N, Knight, R (B116) 2011; 108
Methé, BA, Nelson, KE, Pop, M, Creasy, HH, Giglio, MG, Huttenhower, C, Gevers, D, Petrosino, JF, Abubucker, S, Badger, JH, Chinwalla, AT, Earl, AM, FitzGerald, MG, Fulton, RS, Hallsworth-Pepin, K, Lobos, EA, Madupu, R, Magrini, V, Martin, JC, Mitreva, M, Muzny, DM, Sodergren, EJ, Versalovic, J, Wollam, AM, Worley, KC, Wortman, JR, Young, SK, Zeng, Q, Aagaard, KM, Abolude, OO, Allen-Vercoe, E, Alm, EJ, Alvarado, L, Andersen, GL, Anderson, S, Appelbaum, E, Arachchi, HM, Armitage, G, Arze, CA, Ayvaz, T, Baker, CC, Begg, L, Belachew, T, Bhonagiri, V, Bihan, M, Blaser, MJ, Bloom, T, Bonazzi, VR, Brooks, P, Buck, GA, Buhay, CJ (B34) 2012; 486
Yang, B, Wang, Y, Qian, P-Y (B14) 2016; 17
Parada, AE, Needham, DM, Fuhrman, JA (B69) 2016; 18
Caruso, V, Song, X, Asquith, M, Karstens, L (B100) 2019; 4
Karst, SM, Dueholm, MS, McIlroy, SJ, Kirkegaard, RH, Nielsen, PH, Albertsen, M (B95) 2018; 36
D’Amore, R, Ijaz, UZ, Schirmer, M, Kenny, JG, Gregory, R, Darby, AC, Shakya, M, Podar, M, Quince, C, Hall, N (B75) 2016; 17
Yarza, P, Richter, M, Peplies, J, Euzeby, J, Amann, R, Schleifer, K-H, Ludwig, W, Glöckner, FO, Rosselló-Móra, R (B55) 2008; 31
Shah, M (B90) 2014; 2
Thaiss Christoph, A, Zeevi, D, Levy, M, Zilberman-Schapira, G, Suez, J, Tengeler Anouk, C, Abramson, L, Katz Meirav, N, Korem, T, Zmora, N, Kuperman, Y, Biton, I, Gilad, S, Harmelin, A, Shapiro, H, Halpern, Z, Segal, E, Elinav, E (B80) 2014; 159
Gorzelak, MA, Gill, SK, Tasnim, N, Ahmadi-Vand, Z, Jay, M, Gibson, DL (B59) 2015; 10
Liu, Z, Lozupone, C, Hamady, M, Bushman, FD, Knight, R (B18) 2007; 35
Bokulich, NA, Rideout, JR, Mercurio, WG, Shiffer, A, Wolfe, B, Maurice, CF, Dutton, RJ, Turnbaugh, PJ, Knight, R, Caporaso, JG (B58) 2016; 1
Choo, JM, Leong, LE, Rogers, GB (B62) 2015; 5
Bokulich, NA, Kaehler, BD, Rideout, JR, Dillon, M, Bolyen, E, Knight, R, Huttley, GA, Gregory Caporaso, J (B106) 2018; 6
Kai, S, Matsuo, Y, Nakagawa, S, Kryukov, K, Matsukawa, S, Tanaka, H, Iwai, T, Imanishi, T, Hirota, K (B21) 2019; 9
Roller, BRK, Stoddard, SF, Schmidt, TM (B103) 2016; 1
Salter, SJ, Cox, MJ, Turek, EM, Calus, ST, Cookson, WO, Moffatt, MF, Turner, P, Parkhill, J, Loman, NJ, Walker, AW (B115) 2014; 12
F Escapa, I, Huang, Y, Chen, T, Lin, M, Kokaras, A, Dewhirst, FE, Lemon, KP (B94) 2020; 8
Gohl, DM, Vangay, P, Garbe, J, MacLean, A, Hauge, A, Becker, A, Gould, TJ, Clayton, JB, Johnson, TJ, Hunter, R, Knights, D, Beckman, KB (B73) 2016; 34
Sinha, R, Abnet, CC, White, O, Knight, R, Huttenhower, C (B79) 2015; 16
Ghyselinck, J, Pfeiffer, S, Heylen, K, Sessitsch, A, De Vos, P (B36) 2013; 8
Yeh, Y-C, Needham, DM, Sieradzki, ET, Fuhrman, JA (B77) 2018; 3
Ewels, PA, Peltzer, A, Fillinger, S, Patel, H, Alneberg, J, Wilm, A, Garcia, MU, Di Tommaso, P, Nahnsen, S (B112) 2020; 38
Lagkouvardos, I, Fischer, S, Kumar, N, Clavel, T (B114) 2017; 5
Woese, CR, Kandler, O, Wheelis, ML (B8) 1990; 87
Edgar, RC (B110) 2013; 10
Burz, SD, Abraham, AL, Fonseca, F, David, O, Chapron, A, Béguet-Crespel, F, Cénard, S, Le Roux, K, Patrascu, O, Levenez, F, Schwintner, C, Blottière, HM, Béra-Maillet, C, Lepage, P, Doré, J, Juste, C (B61) 2019; 9
B54
Klappenbach, JA, Saxman, PR, Cole, JR, Schmidt, TM (B102) 2001; 29
Jones, MB, Highlander, SK, Anderson, EL, Li, W, Dayrit, M, Klitgord, N, Fabani, MM, Seguritan, V, Green, J, Pride, DT, Yooseph, S, Biggs, W, Nelson, KE, Venter, JC (B74) 2015; 112
B109
Quast, C, Pruesse, E, Yilmaz, P, Gerken, J, Schweer, T, Yarza, P, Peplies, J, Glöckner, FO (B53) 2013; 41
Berry, D, Ben Mahfoudh, K, Wagner, M, Loy, A (B17) 2011; 77
Branton, D, Deamer, DW, Marziali, A, Bayley, H, Benner, SA, Butler, T, Di Ventra, M, Garaj, S, Hibbs, A, Huang, X, Jovanovich, SB, Krstic, PS, Lindsay, S, Ling, XS, Mastrangelo, CH, Meller, A, Oliver, JS, Pershin, YV, Ramsey, JM, Riehn, R, Soni, GV, Tabard-Cossa, V, Wanunu, M, Wiggin, M, Schloss, JA (B19) 2008; 26
Reitmeier, S, Kiessling, S, Clavel, T, List, M, Almeida, EL, Ghosh, TS, Neuhaus, K, Grallert, H, Linseisen, J, Skurk, T, Brandl, B, Breuninger, TA, Troll, M, Rathmann, W, Linkohr, B, Hauner, H, Laudes, M, Franke, A, Le Roy, CI, Bell, JT, Spector, T, Baumbach, J, O’Toole, PW, Peters, A, Haller, D (B1) 2020; 28
Barb, JJ, Oler, AJ, Kim, H-S, Chalmers, N, Wallen, GR, Cashion, A, Munson, PJ, Ames, NJ (B38) 2016; 11
Martínez-Porchas, M, Vargas-Albores, F (B13) 2017; 3
Fouhy, F, Deane, J, Rea, MC, O’Sullivan, O, Ross, RP, O’Callaghan, G, Plant, BJ, Stanton, C (B63) 2015; 10
Thijs, S, Op De Beeck, M, Beckers, B, Truyens, S, Stevens, V, Van Hamme, JD, Weyens, N, Vangronsveld, J (B71) 2017; 8
Tremblay, J, Singh, K, Fern, A, Kirton, ES, He, S, Woyke, T, Lee, J, Chen, F, Dangl, JL, Tringe, SG (B72) 2015; 6
Sinha, R, Abu-Ali, G, Vogtmann, E, Fodor, AA, Ren, B, Amir, A, Schwager, E, Crabtree, J, Ma, S, Abnet, CC, Knight, R, White, O, Huttenhower, C (B67) 2017; 35
Walker, AW, Martin, JC, Scott, P, Parkhill, J, Flint, HJ, Scott, KP (B84) 2015; 3
Baker, GC, Smith, JJ, Cowan, DA (B10) 2003; 55
Hiergeist, A, Reischl, U, Gessner, A (B6) 2016; 306
Caporaso, JG, Kuczynski, J, Stombaugh, J, Bittinger, K, Bushman, FD, Costello, EK, Fierer, N, Peña, AG, Goodrich, JK, Gordon, JI, Huttley, GA, Kelley, ST, Knights, D, Koenig, JE, Ley, RE, Lozupone, CA, McDonald, D, Muegge, BD, Pirrung, M, Reeder, J, Sevinsky, JR, Turnbaugh, PJ, Walters, WA, Widmann, J, Yatsunenko, T, Zaneveld, J, Knight, R (B46) 2010; 7
Kozich, JJ, Westcott, SL, Baxter, NT, Highlander, SK, Schloss, PD (B76) 2013; 79
Escobar-Zepeda, A, Godoy-Lozano, EE, Raggi, L, Segovia, L, Merino, E, Gutiérrez-Rios, RM, Juarez, K, Licea-Navarro, AF, Pardo-Lopez, L, Sanchez-Flores, A (B57) 2018; 8
Costea, PI, Zeller, G, Sunagawa, S, Pelletier, E, Alberti, A, Levenez, F, Tramontano, M, Driessen, M, Hercog, R, Jung, F-E, Kultima, JR, Hayward, MR, Coelho, LP, Allen-Vercoe, E, Bertrand, L, Blaut, M, Brown, JRM, Carton, T, Cools-Portier, S, Daigneault, M, Derrien, M, Druesne, A, de Vos, WM, Finlay, BB, Flint, HJ, Guarner, F, Hattori, M, Heilig, H, Luna, RA, van Hylckama Vlieg, J, Junick, J, Klymiuk, I, Langella, P, Le Chatelier, E, Mai, V, Manichanh, C, Martin, JC, Mery, C, Morita, H, O’Toole, PW, Orvain, C, Patil, KR, Penders, J, Persson, S, Pons, N, Popova, M, Salonen, A, Saulnier, D, Scott, KP, Singh, B, Slezak, K, Veiga, P, Versalovic, J, Zhao, L, Zoetendal, EG, Ehrlich, SD, Dore, J, Bork, P (B68) 2017; 35
Penington, JS, Penno, MAS, Ngui, KM, Ajami, NJ, Roth-Schulze, AJ, Wilcox, SA, Bandala-Sanchez, E, Wentworth, JM, Barry, SC, Brown, CY, Couper, JJ, Petrosino, JF, Papenfuss, AT, Harrison, LC (B83) 2018; 8
B113
B111
Goodrich, JK, Davenport, ER, Beaumont, M, Jackson, MA, Knight, R, Ober, C, Spector, TD, Bell, JT, Clark, AG, Ley, RE (B5) 2016; 19
Yoon, S-H, Ha, S-M, Kwon, S, Lim, J, Kim, Y, Seo, H, Chun, J (B101) 2017; 67
Fredriksson, NJ, Hermansson, M, Wilen, BM (B89) 2013; 8
(B33) 2012; 7
Bukin, YS, Galachyants, YP, Morozov, IV, Bukin, SV, Zakharenko, AS, Zemskaya, TI (B37) 2019; 6
Callahan, BJ, McMurdie, PJ, Rosen, MJ, Han, AW, Johnson, AJA, Holmes, SP (B48) 2016; 13
Hamady, M, Knight, R (B2) 2009; 19
Martijn, J, Lind, AE, Schön, ME, Spiertz, I, Juzokaite, L, Bunikis, I, Pettersson, OV, Ettema, TJG (B25) 2019; 21
Schloss, PD, Westcott, SL, Ryabin, T, Hall, JR, Hartmann, M, Hollister, EB, Lesniewski, RA, Oakley, BB, Parks, DH, Robinson, CJ, Sahl, JW, Stres, B, Thallinger, GG, Van Horn, DJ, Weber, CF (B45) 2009; 75
Reitmeier, S, Kiessling, S, Neuhaus, K, Haller, D (B105) 2020; 1
Godon, JJ, Zumstein, E, Dabert, P, Habouzit, F, Moletta, R (B104) 1997; 63
Nossa, CW, Oberdorf, WE, Yang, L, Aas, JA, Paster, BJ, Desantis, TZ, Brodie, EL, Malamud, D, Poles, MA, Pei, Z (B32) 2010; 16
Bjerre, RD, Hugerth, LW, Boulund, F, Seifert, M, Johansen, JD, Engstrand, L (B85) 2019; 9
Pinna, NK, Dutta, A, Monzoorul Haque, M, Mande, SS (B39) 2019; 10
DeSantis, TZ, Hugenholtz, P, Larsen, N, Rojas, M, Brodie, EL, Keller, K, Huber, T, Dalevi, D, Hu, P, Andersen, GL (B51) 2006; 72
Karstens, L, Asquith, M, Davin, S, Fair, D, Gregory, WT, Wolfe, AJ, Braun, J, McWeeney, S (B78) 2019; 4
Claesson, MJ, O’Sullivan, O, Wang, Q, Nikkila, J, Marchesi, JR, Smidt, H, de Vos, WM, Ross, RP, O’Toole, PW (B35) 2009; 4
Bellali, S, Lagier, JC, Raoult, D, Bou Khalil, J (B81) 2019; 10
Duvallet, C, Gibbons, SM, Gurry, T, Irizarry, RA, Alm, EJ (B4) 2017; 8
Fischer, MA, Güllert, S, Neulinger, SC, Streit, WR, Schmitz, RA (B12) 2016; 7
Rausch, P, Rühlemann, M, Hermes, BM, Doms, S, Dagan, T, Dierking, K, Domin, H, Fraune, S, von Frieling, J, Hentschel, U, Heinsen, F-A, Höppner, M, Jahn, MT, Jaspers, C, Kissoyan, KAB, Langfeldt, D, Rehman, A, Reusch, TBH, Roeder, T, Schmitz, RA, Schulenbur
References_xml – ident: e_1_3_2_112_2
– ident: e_1_3_2_72_2
  doi: 10.3389/fmicb.2017.00494
– ident: e_1_3_2_89_2
  doi: 10.1128/mSphere.00410-18
– ident: e_1_3_2_34_2
  doi: 10.1371/journal.pone.0039315
– ident: e_1_3_2_46_2
  doi: 10.1128/AEM.01541-09
– ident: e_1_3_2_44_2
  doi: 10.3390/genes11080878
– ident: e_1_3_2_35_2
  doi: 10.1038/nature11209
– ident: e_1_3_2_61_2
  doi: 10.1158/1055-9965.EPI-15-0951
– ident: e_1_3_2_45_2
  doi: 10.1186/s12864-017-3501-4
– ident: e_1_3_2_78_2
  doi: 10.1128/mSystems.00023-18
– ident: e_1_3_2_70_2
  doi: 10.1111/1462-2920.13023
– ident: e_1_3_2_57_2
  doi: 10.1016/j.mimet.2019.105811
– ident: e_1_3_2_9_2
  doi: 10.1073/pnas.87.12.4576
– ident: e_1_3_2_28_2
  doi: 10.1038/s41467-019-13036-1
– ident: e_1_3_2_83_2
  doi: 10.3389/fmicb.2020.00972
– ident: e_1_3_2_7_2
  doi: 10.1016/j.ijmm.2016.03.005
– ident: e_1_3_2_17_2
  doi: 10.1111/1758-2229.12684
– ident: e_1_3_2_8_2
  doi: 10.1371/journal.pone.0094249
– ident: e_1_3_2_11_2
  doi: 10.1016/j.mimet.2003.08.009
– ident: e_1_3_2_13_2
  doi: 10.3389/fmicb.2016.01297
– ident: e_1_3_2_48_2
  doi: 10.1038/s41587-019-0209-9
– ident: e_1_3_2_73_2
  doi: 10.3389/fmicb.2015.00771
– ident: e_1_3_2_90_2
  doi: 10.1371/journal.pone.0076431
– ident: e_1_3_2_30_2
  doi: 10.1038/s41467-019-09637-5
– ident: e_1_3_2_80_2
  doi: 10.1186/s13059-015-0841-8
– ident: e_1_3_2_109_2
  doi: 10.1093/bioinformatics/btq461
– ident: e_1_3_2_106_2
  doi: 10.1016/j.xpro.2020.100148
– ident: e_1_3_2_71_2
  doi: 10.1093/nar/gks808
– ident: e_1_3_2_115_2
  doi: 10.7717/peerj.2836
– ident: e_1_3_2_88_2
  doi: 10.1016/j.ijfoodmicro.2017.10.028
– ident: e_1_3_2_52_2
  doi: 10.1128/AEM.03006-05
– ident: e_1_3_2_32_2
  doi: 10.1186/s12864-017-4229-x
– ident: e_1_3_2_86_2
  doi: 10.1038/s41598-019-53599-z
– ident: e_1_3_2_82_2
  doi: 10.3389/fmicb.2019.01606
– ident: e_1_3_2_56_2
  doi: 10.1016/j.syapm.2008.07.001
– ident: e_1_3_2_51_2
  doi: 10.1038/ismej.2017.119
– ident: e_1_3_2_76_2
  doi: 10.1186/s12864-015-2194-9
– ident: e_1_3_2_75_2
  doi: 10.1073/pnas.1519288112
– ident: e_1_3_2_87_2
  doi: 10.1016/j.jid.2016.01.016
– ident: e_1_3_2_111_2
  doi: 10.1038/nmeth.2604
– ident: e_1_3_2_26_2
  doi: 10.1111/1462-2920.14636
– ident: e_1_3_2_92_2
  doi: 10.3389/fmicb.2018.02140
– ident: e_1_3_2_24_2
  doi: 10.1186/s13742-016-0111-z
– ident: e_1_3_2_49_2
  doi: 10.1038/nmeth.3869
– ident: e_1_3_2_114_2
– ident: e_1_3_2_74_2
  doi: 10.1038/nbt.3601
– ident: e_1_3_2_110_2
  doi: 10.14806/ej.17.1.200
– ident: e_1_3_2_15_2
  doi: 10.1186/s12859-016-0992-y
– ident: e_1_3_2_50_2
  doi: 10.1093/bioinformatics/bty113
– ident: e_1_3_2_65_2
  doi: 10.1038/s41598-018-34294-x
– volume: 2
  start-page: 176
  year: 2014
  ident: e_1_3_2_91_2
  article-title: An application of sequencing batch reactors in the identification of microbial community structure from an activated sludge
  publication-title: J Applied Environ Microbiol
– ident: e_1_3_2_53_2
  doi: 10.1093/nar/gkt1244
– ident: e_1_3_2_22_2
  doi: 10.1002/2211-5463.12590
– ident: e_1_3_2_4_2
  doi: 10.1111/j.1365-294X.2012.05538.x
– ident: e_1_3_2_31_2
  doi: 10.1128/IAI.00493-09
– ident: e_1_3_2_3_2
  doi: 10.1101/gr.085464.108
– ident: e_1_3_2_105_2
  doi: 10.1128/AEM.63.7.2802-2813.1997
– ident: e_1_3_2_33_2
  doi: 10.3748/wjg.v16.i33.4135
– ident: e_1_3_2_94_2
  doi: 10.1128/mBio.01557-20
– ident: e_1_3_2_16_2
  doi: 10.3389/fmicb.2019.02796
– ident: e_1_3_2_81_2
  doi: 10.1016/j.cell.2014.09.048
– ident: e_1_3_2_42_2
  doi: 10.3389/fmicb.2020.01262
– ident: e_1_3_2_77_2
  doi: 10.1128/AEM.01043-13
– ident: e_1_3_2_96_2
  doi: 10.1038/nbt.4045
– ident: e_1_3_2_43_2
  doi: 10.1371/journal.pone.0227434
– ident: e_1_3_2_5_2
  doi: 10.1038/s41467-017-01973-8
– ident: e_1_3_2_101_2
  doi: 10.1128/mSystems.00163-18
– ident: e_1_3_2_39_2
  doi: 10.1371/journal.pone.0148047
– ident: e_1_3_2_93_2
  doi: 10.1186/s40168-019-0743-1
– ident: e_1_3_2_100_2
  doi: 10.1101/081257
– ident: e_1_3_2_18_2
  doi: 10.1128/AEM.05220-11
– ident: e_1_3_2_107_2
  doi: 10.1186/s40168-018-0470-z
– ident: e_1_3_2_60_2
  doi: 10.1371/journal.pone.0134802
– ident: e_1_3_2_20_2
  doi: 10.1038/nbt.1495
– ident: e_1_3_2_97_2
  doi: 10.1128/AEM.01368-19
– ident: e_1_3_2_40_2
  doi: 10.3389/fgene.2019.00653
– ident: e_1_3_2_19_2
  doi: 10.1093/nar/gkm541
– ident: e_1_3_2_117_2
  doi: 10.1073/pnas.1000080107
– ident: e_1_3_2_54_2
  doi: 10.1093/nar/gks1219
– ident: e_1_3_2_63_2
  doi: 10.1038/srep16350
– ident: e_1_3_2_99_2
  doi: 10.5808/GI.2018.16.4.e24
– ident: e_1_3_2_55_2
– ident: e_1_3_2_64_2
  doi: 10.1371/journal.pone.0119355
– ident: e_1_3_2_119_2
  doi: 10.1016/j.anaerobe.2014.04.006
– ident: e_1_3_2_37_2
  doi: 10.1371/journal.pone.0071360
– ident: e_1_3_2_10_2
  doi: 10.1128/JCM.01228-07
– ident: e_1_3_2_29_2
  doi: 10.1016/j.gpb.2015.08.002
– ident: e_1_3_2_69_2
  doi: 10.1038/nbt.3960
– ident: e_1_3_2_62_2
  doi: 10.1038/s41598-019-45173-4
– ident: e_1_3_2_118_2
  doi: 10.1186/s40168-017-0396-x
– ident: e_1_3_2_103_2
  doi: 10.1093/nar/29.1.181
– ident: e_1_3_2_102_2
  doi: 10.1099/ijsem.0.001755
– ident: e_1_3_2_116_2
  doi: 10.1186/s12915-014-0087-z
– ident: e_1_3_2_67_2
  doi: 10.1111/jam.14608
– ident: e_1_3_2_41_2
  doi: 10.4172/jpb.1000381
– ident: e_1_3_2_2_2
  doi: 10.1016/j.chom.2020.06.004
– ident: e_1_3_2_85_2
  doi: 10.1186/s40168-015-0087-4
– ident: e_1_3_2_120_2
  doi: 10.1111/j.1550-7408.1999.tb04612.x
– ident: e_1_3_2_59_2
  doi: 10.1128/mSystems.00062-16
– ident: e_1_3_2_66_2
  doi: 10.1128/mSystems.00547-19
– ident: e_1_3_2_21_2
  doi: 10.1126/science.1162986
– ident: e_1_3_2_84_2
  doi: 10.1038/s41598-018-22491-7
– ident: e_1_3_2_108_2
  doi: 10.1128/AEM.00062-07
– ident: e_1_3_2_14_2
  doi: 10.1016/j.heliyon.2017.e00370
– ident: e_1_3_2_68_2
  doi: 10.1038/nbt.3981
– ident: e_1_3_2_98_2
  doi: 10.1093/gigascience/giy054
– ident: e_1_3_2_95_2
  doi: 10.1186/s40168-020-00841-w
– ident: e_1_3_2_12_2
  doi: 10.7717/peerj.3036
– ident: e_1_3_2_27_2
  doi: 10.1093/nar/gkz569
– ident: e_1_3_2_25_2
  doi: 10.12688/f1000research.16817.2
– ident: e_1_3_2_23_2
  doi: 10.1016/j.rsma.2018.100485
– ident: e_1_3_2_104_2
  doi: 10.1038/nmicrobiol.2016.160
– ident: e_1_3_2_79_2
  doi: 10.1128/mSystems.00290-19
– ident: e_1_3_2_58_2
  doi: 10.1038/s41598-018-30515-5
– ident: e_1_3_2_113_2
  doi: 10.1038/s41587-020-0439-x
– ident: e_1_3_2_6_2
  doi: 10.1016/j.chom.2016.04.017
– ident: e_1_3_2_36_2
  doi: 10.1371/journal.pone.0006669
– ident: e_1_3_2_47_2
  doi: 10.1038/nmeth.f.303
– ident: e_1_3_2_38_2
  doi: 10.1038/sdata.2019.7
– volume: 10
  start-page: 2796
  year: 2019
  ident: B15
  article-title: Exploring the archaeome: detection of archaeal signatures in the human body
  publication-title: Front Microbiol
  doi: 10.3389/fmicb.2019.02796
– volume: 3
  start-page: 26
  year: 2015
  ident: B84
  article-title: 16S rRNA gene-based profiling of the human infant gut microbiota is strongly influenced by sample processing and PCR primer choice
  publication-title: Microbiome
  doi: 10.1186/s40168-015-0087-4
– volume: 8
  start-page: 4386
  year: 2018
  ident: B83
  article-title: Influence of fecal collection conditions and 16S rRNA gene sequencing at two centers on human gut microbiota analysis
  publication-title: Sci Rep
  doi: 10.1038/s41598-018-22491-7
– volume: 41
  start-page: D590
  year: 2013
  end-page: D596
  ident: B53
  article-title: The SILVA ribosomal RNA gene database project: improved data processing and web-based tools
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gks1219
– volume: 3
  year: 2018
  ident: B77
  article-title: Taxon disappearance from microbiome analysis reinforces the value of mock communities as a standard in every sequencing run
  publication-title: mSystems
  doi: 10.1128/mSystems.00023-18
– volume: 55
  start-page: 541
  year: 2003
  end-page: 555
  ident: B10
  article-title: Review and re-analysis of domain-specific 16S primers
  publication-title: J Microbiol Methods
  doi: 10.1016/j.mimet.2003.08.009
– volume: 5
  start-page: 16350
  year: 2015
  ident: B62
  article-title: Sample storage conditions significantly influence faecal microbiome profiles
  publication-title: Sci Rep
  doi: 10.1038/srep16350
– volume: 6
  start-page: 190007
  year: 2019
  ident: B37
  article-title: The effect of 16S rRNA region choice on bacterial community metabarcoding results
  publication-title: Sci Data
  doi: 10.1038/sdata.2019.7
– volume: 10
  start-page: 5029
  year: 2019
  ident: B27
  article-title: Evaluation of 16S rRNA gene sequencing for species and strain-level microbiome analysis
  publication-title: Nat Commun
  doi: 10.1038/s41467-019-13036-1
– volume: 46
  start-page: 327
  year: 1999
  end-page: 338
  ident: B119
  article-title: Investigating deep phylogenetic relationships among cyanobacteria and plastids by small subunit rRNA sequence analysis
  publication-title: J Eukaryot Microbiol
  doi: 10.1111/j.1550-7408.1999.tb04612.x
– volume: 26
  start-page: 1146
  year: 2008
  end-page: 1153
  ident: B19
  article-title: The potential and challenges of nanopore sequencing
  publication-title: Nat Biotechnol
  doi: 10.1038/nbt.1495
– volume: 34
  start-page: 942
  year: 2016
  end-page: 949
  ident: B73
  article-title: Systematic improvement of amplicon marker gene methods for increased accuracy in microbiome studies
  publication-title: Nat Biotechnol
  doi: 10.1038/nbt.3601
– volume: 1
  start-page: 100148
  year: 2020
  ident: B105
  article-title: Comparing circadian rhythmicity in the human gut microbiome
  publication-title: STAR Protoc
  doi: 10.1016/j.xpro.2020.100148
– volume: 18
  start-page: 1403
  year: 2016
  end-page: 1414
  ident: B69
  article-title: Every base matters: assessing small subunit rRNA primers for marine microbiomes with mock communities, time series and global field samples
  publication-title: Environ Microbiol
  doi: 10.1111/1462-2920.13023
– volume: 11
  start-page: 1262
  year: 2020
  ident: B41
  article-title: Comparison of bioinformatics pipelines and operating systems for the analyses of 16S rRNA gene amplicon sequences in human fecal samples
  publication-title: Front Microbiol
  doi: 10.3389/fmicb.2020.01262
– ident: B111
  article-title: Peltzer A , Straub D , Patel H . 2019 . nf-core/ampliseq: Ampliseq version 1.1.2 . https://doi.org/10.5281/zenodo.3585924 .
– volume: 18
  start-page: 841
  year: 2017
  ident: B31
  article-title: Optimisation of 16S rRNA gut microbiota profiling of extremely low birth weight infants
  publication-title: BMC Genomics
  doi: 10.1186/s12864-017-4229-x
– volume: 35
  year: 2007
  ident: B18
  article-title: Short pyrosequencing reads suffice for accurate microbial community analysis
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkm541
– volume: 1
  start-page: 16160
  year: 2016
  ident: B103
  article-title: Exploiting rRNA operon copy number to investigate bacterial reproductive strategies
  publication-title: Nat Microbiol
  doi: 10.1038/nmicrobiol.2016.160
– volume: 5
  year: 2017
  ident: B114
  article-title: Rhea: a transparent and modular R pipeline for microbial profiling based on 16S rRNA gene amplicons
  publication-title: PeerJ
  doi: 10.7717/peerj.2836
– volume: 11
  start-page: 972
  year: 2020
  ident: B82
  article-title: Variations of gut microbiome profile under different storage conditions and preservation periods: a multi-dimensional evaluation
  publication-title: Front Microbiol
  doi: 10.3389/fmicb.2020.00972
– volume: 31
  start-page: 241
  year: 2008
  end-page: 250
  ident: B55
  article-title: The All-Species Living Tree project: a 16S rRNA-based phylogenetic tree of all sequenced type strains
  publication-title: Syst Appl Microbiol
  doi: 10.1016/j.syapm.2008.07.001
– volume: 45
  start-page: 2761
  year: 2007
  end-page: 2764
  ident: B9
  article-title: 16S rRNA gene sequencing for bacterial identification in the diagnostic laboratory: pluses, perils, and pitfalls
  publication-title: J Clin Microbiol
  doi: 10.1128/JCM.01228-07
– volume: 10
  start-page: 996
  year: 2013
  end-page: 998
  ident: B110
  article-title: UPARSE: highly accurate OTU sequences from microbial amplicon reads
  publication-title: Nat Methods
  doi: 10.1038/nmeth.2604
– volume: 72
  start-page: 5069
  year: 2006
  end-page: 5072
  ident: B51
  article-title: Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB
  publication-title: Appl Environ Microbiol
  doi: 10.1128/AEM.03006-05
– volume: 8
  start-page: 494
  year: 2017
  ident: B71
  article-title: Comparative evaluation of four bacteria-specific primer pairs for 16S rRNA gene surveys
  publication-title: Front Microbiol
  doi: 10.3389/fmicb.2017.00494
– volume: 29
  start-page: 181
  year: 2001
  end-page: 184
  ident: B102
  article-title: rrndb: the Ribosomal RNA Operon Copy Number Database
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/29.1.181
– ident: B54
  article-title: Laboratory for Integrated Bioinformatics, Center for Integrative Medical Sciences . 2015 . GRD—Genomic-based 16S ribosomal RNA database, Riken (Japan) . https://metasystems.riken.jp/grd/ .
– volume: 16
  start-page: 4135
  year: 2010
  end-page: 4144
  ident: B32
  article-title: Design of 16S rRNA gene primers for 454 pyrosequencing of the human foregut microbiome
  publication-title: World J Gastroenterol
  doi: 10.3748/wjg.v16.i33.4135
– volume: 108
  start-page: 4516
  year: 2011
  end-page: 4522
  ident: B116
  article-title: Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.1000080107
– volume: 25
  start-page: 407
  year: 2016
  end-page: 416
  ident: B60
  article-title: Collecting fecal samples for microbiome analyses in epidemiology studies
  publication-title: Cancer Epidemiol Biomarkers Prev
  doi: 10.1158/1055-9965.EPI-15-0951
– volume: 486
  start-page: 215
  year: 2012
  end-page: 221
  ident: B34
  article-title: A framework for human microbiome research
  publication-title: Nature
– volume: 17
  start-page: 135
  year: 2016
  ident: B14
  article-title: Sensitivity and correlation of hypervariable regions in 16S rRNA genes in phylogenetic analysis
  publication-title: BMC Bioinformatics
  doi: 10.1186/s12859-016-0992-y
– volume: 16
  year: 2018
  ident: B98
  article-title: Evaluation of 16S rRNA databases for taxonomic assignments using mock community
  publication-title: Genomics Inform
  doi: 10.5808/GI.2018.16.4.e24
– volume: 11
  year: 2020
  ident: B93
  article-title: Generation of comprehensive ecosystem-specific reference databases with species-level resolution by high-throughput full-length 16S rRNA gene sequencing and automated taxonomy assignment (AutoTax)
  publication-title: mBio
  doi: 10.1128/mBio.01557-20
– volume: 85
  year: 2019
  ident: B96
  article-title: Relative performance of MinION (Oxford Nanopore Technologies) versus Sequel (Pacific Biosciences) third-generation sequencing instruments in identification of agricultural and forest fungal pathogens
  publication-title: Appl Environ Microbiol
  doi: 10.1128/AEM.01368-19
– volume: 79
  start-page: 5112
  year: 2013
  end-page: 5120
  ident: B76
  article-title: Development of a dual-index sequencing strategy and curation pipeline for analyzing amplicon sequence data on the MiSeq Illumina sequencing platform
  publication-title: Appl Environ Microbiol
  doi: 10.1128/AEM.01043-13
– volume: 8
  start-page: 65
  year: 2020
  ident: B94
  article-title: Construction of habitat-specific training sets to achieve species-level assignment in 16S rRNA gene datasets
  publication-title: Microbiome
  doi: 10.1186/s40168-020-00841-w
– volume: 6
  start-page: 771
  year: 2015
  ident: B72
  article-title: Primer and platform effects on 16S rRNA tag sequencing
  publication-title: Front Microbiol
  doi: 10.3389/fmicb.2015.00771
– volume: 6
  start-page: 17
  year: 2018
  ident: B117
  article-title: Combining 16S rRNA gene variable regions enables high-resolution microbial community profiling
  publication-title: Microbiome
  doi: 10.1186/s40168-017-0396-x
– volume: 19
  start-page: 731
  year: 2016
  end-page: 743
  ident: B5
  article-title: Genetic determinants of the gut microbiome in UK twins
  publication-title: Cell Host Microbe
  doi: 10.1016/j.chom.2016.04.017
– volume: 21
  start-page: 1794
  year: 2012
  end-page: 1805
  ident: B3
  article-title: Next-generation sequencing technologies for environmental DNA research
  publication-title: Mol Ecol
  doi: 10.1111/j.1365-294X.2012.05538.x
– volume: 63
  start-page: 2802
  year: 1997
  end-page: 2813
  ident: B104
  article-title: Molecular microbial diversity of an anaerobic digestor as determined by small-subunit rDNA sequence analysis
  publication-title: Appl Environ Microbiol
  doi: 10.1128/AEM.63.7.2802-2813.1997
– volume: 10
  start-page: 653
  year: 2019
  ident: B39
  article-title: Can targeting non-contiguous V-regions with paired-end sequencing improve 16S rRNA-based taxonomic resolution of microbiomes?: an in silico evaluation
  publication-title: Front Genet
  doi: 10.3389/fgene.2019.00653
– volume: 18
  start-page: 114
  year: 2017
  ident: B44
  article-title: SILVA, RDP, Greengenes, NCBI and OTT—how do these taxonomies compare?
  publication-title: BMC Genomics
  doi: 10.1186/s12864-017-3501-4
– volume: 11
  year: 2016
  ident: B38
  article-title: Development of an analysis pipeline characterizing multiple hypervariable regions of 16S rRNA using mock samples
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0148047
– volume: 169
  start-page: 105811
  year: 2020
  ident: B56
  article-title: Bioinformatic strategies to address limitations of 16rRNA short-read amplicons from different sequencing platforms
  publication-title: J Microbiol Methods
  doi: 10.1016/j.mimet.2019.105811
– volume: 77
  start-page: 7846
  year: 2011
  end-page: 7849
  ident: B17
  article-title: Barcoded primers used in multiplex amplicon pyrosequencing bias amplification
  publication-title: Appl Environ Microbiol
  doi: 10.1128/AEM.05220-11
– volume: 29
  start-page: 10
  year: 2014
  end-page: 21
  ident: B118
  article-title: Towards molecular biomarkers for biogas production from lignocellulose-rich substrates
  publication-title: Anaerobe
  doi: 10.1016/j.anaerobe.2014.04.006
– volume: 7
  start-page: giy054
  year: 2018
  ident: B97
  article-title: Benchmarking taxonomic assignments based on 16S rRNA gene profiling of the microbiota from commonly sampled environments
  publication-title: Gigascience
  doi: 10.1093/gigascience/giy054
– volume: 16
  start-page: 276
  year: 2015
  ident: B79
  article-title: The microbiome quality control project: baseline study design and future directions
  publication-title: Genome Biol
  doi: 10.1186/s13059-015-0841-8
– volume: 9
  start-page: 548
  year: 2019
  end-page: 557
  ident: B21
  article-title: Rapid bacterial identification by direct PCR amplification of 16S rRNA genes using the MinION nanopore sequencer
  publication-title: FEBS Open Bio
  doi: 10.1002/2211-5463.12590
– volume: 2
  start-page: 176
  year: 2014
  end-page: 184
  ident: B90
  article-title: An application of sequencing batch reactors in the identification of microbial community structure from an activated sludge
  publication-title: J Applied Environ Microbiol
– volume: 8
  start-page: 12034
  year: 2018
  ident: B57
  article-title: Analysis of sequencing strategies and tools for taxonomic annotation: defining standards for progressive metagenomics
  publication-title: Sci Rep
  doi: 10.1038/s41598-018-30515-5
– volume: 8
  start-page: 12
  year: 2015
  ident: B40
  article-title: A comparison of three bioinformatics pipelines for the analysis of preterm gut microbiota using 16S rRNA gene sequencing data
  publication-title: J Proteomics Bioinform
  doi: 10.4172/jpb.1000381
– volume: 15
  year: 2020
  ident: B42
  article-title: Comparing bioinformatic pipelines for microbial 16S rRNA amplicon sequencing
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0227434
– volume: 9
  year: 2014
  ident: B7
  article-title: Analysis, optimization and verification of Illumina-generated 16S rRNA gene amplicon surveys
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0094249
– volume: 7
  start-page: 133
  year: 2019
  ident: B92
  article-title: Comparative analysis of amplicon and metagenomic sequencing methods reveals key features in the evolution of animal metaorganisms
  publication-title: Microbiome
  doi: 10.1186/s40168-019-0743-1
– volume: 35
  start-page: 1069
  year: 2017
  end-page: 1076
  ident: B68
  article-title: Towards standards for human fecal sample processing in metagenomic studies
  publication-title: Nat Biotechnol
  doi: 10.1038/nbt.3960
– volume: 28
  start-page: 258
  year: 2020
  end-page: 272.e6
  ident: B1
  article-title: Arrhythmic gut microbiome signatures predict risk of type 2 diabetes
  publication-title: Cell Host Microbe
  doi: 10.1016/j.chom.2020.06.004
– volume: 47
  year: 2019
  ident: B26
  article-title: High-throughput amplicon sequencing of the full-length 16S rRNA gene with single-nucleotide resolution
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkz569
– volume: 13
  start-page: 278
  year: 2015
  end-page: 289
  ident: B28
  article-title: PacBio sequencing and its applications
  publication-title: Genomics Proteomics Bioinformatics
  doi: 10.1016/j.gpb.2015.08.002
– volume: 9
  start-page: 17287
  year: 2019
  ident: B85
  article-title: Effects of sampling strategy and DNA extraction on human skin microbiome investigations
  publication-title: Sci Rep
  doi: 10.1038/s41598-019-53599-z
– volume: 10
  start-page: 1606
  year: 2019
  ident: B81
  article-title: Among live and dead bacteria, the optimization of sample collection and processing remains essential in recovering gut microbiota components
  publication-title: Front Microbiol
  doi: 10.3389/fmicb.2019.01606
– volume: 8
  year: 2013
  ident: B36
  article-title: The effect of primer choice and short read sequences on the outcome of 16S rRNA gene based diversity studies
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0071360
– volume: 5
  start-page: 4
  year: 2016
  ident: B23
  article-title: Species-level resolution of 16S rRNA gene amplicons sequenced through the MinION™ portable nanopore sequencer
  publication-title: Gigascience
  doi: 10.1186/s13742-016-0111-z
– volume: 6
  start-page: 90
  year: 2018
  ident: B106
  article-title: Optimizing taxonomic classification of marker-gene amplicon sequences with QIIME 2’s q2-feature-classifier plugin
  publication-title: Microbiome
  doi: 10.1186/s40168-018-0470-z
– volume: 4
  year: 2019
  ident: B78
  article-title: Controlling for contaminants in low-biomass 16S rRNA gene sequencing experiments
  publication-title: mSystems
  doi: 10.1128/mSystems.00290-19
– volume: 42
  start-page: D633
  year: 2014
  end-page: D642
  ident: B52
  article-title: Ribosomal Database Project: data and tools for high throughput rRNA analysis
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkt1244
– volume: 112
  start-page: 14024
  year: 2015
  end-page: 14029
  ident: B74
  article-title: Library preparation methodology can influence genomic and functional predictions in human microbiome research
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.1519288112
– volume: 306
  start-page: 334
  year: 2016
  end-page: 342
  ident: B6
  article-title: Multicenter quality assessment of 16S ribosomal DNA-sequencing for microbiome analyses reveals high inter-center variability
  publication-title: Int J Med Microbiol
  doi: 10.1016/j.ijmm.2016.03.005
– volume: 87
  start-page: 4576
  year: 1990
  end-page: 4579
  ident: B8
  article-title: Towards a natural system of organisms: proposal for the domains Archaea, Bacteria, and Eucarya
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.87.12.4576
– volume: 323
  start-page: 133
  year: 2009
  end-page: 138
  ident: B20
  article-title: Real-time DNA sequencing from single polymerase molecules
  publication-title: Science
  doi: 10.1126/science.1162986
– volume: 265
  start-page: 9
  year: 2018
  end-page: 17
  ident: B87
  article-title: A comparison of bioinformatic approaches for 16S rRNA gene profiling of food bacterial microbiota
  publication-title: Int J Food Microbiol
  doi: 10.1016/j.ijfoodmicro.2017.10.028
– volume: 38
  start-page: 276
  year: 2020
  end-page: 278
  ident: B112
  article-title: The nf-core framework for community-curated bioinformatics pipelines
  publication-title: Nat Biotechnol
  doi: 10.1038/s41587-020-0439-x
– volume: 8
  start-page: 16321
  year: 2018
  ident: B64
  article-title: Impact of DNA extraction method and targeted 16S-rRNA hypervariable region on oral microbiota profiling
  publication-title: Sci Rep
  doi: 10.1038/s41598-018-34294-x
– volume: 3
  year: 2018
  ident: B88
  article-title: Impact of DNA sequencing and analysis methods on 16S rRNA gene bacterial community analysis of dairy products
  publication-title: mSphere
  doi: 10.1128/mSphere.00410-18
– volume: 77
  start-page: 4668
  year: 2009
  end-page: 4678
  ident: B30
  article-title: Community-wide response of the gut microbiota to enteropathogenic Citrobacter rodentium infection revealed by deep sequencing
  publication-title: Infect Immun
  doi: 10.1128/IAI.00493-09
– ident: B99
  article-title: Edgar RC . 2016 . UNOISE2: improved error-correction for Illumina 16S and ITS amplicon sequencing . bioRxiv doi: 10.1101/081257:081257 .
– volume: 5
  year: 2020
  ident: B65
  article-title: Toward standards in clinical microbiota studies: comparison of three DNA extraction methods and two bioinformatic pipelines
  publication-title: mSystems
  doi: 10.1128/mSystems.00547-19
– volume: 67
  start-page: 1613
  year: 2017
  end-page: 1617
  ident: B101
  article-title: Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies
  publication-title: Int J Syst Evol Microbiol
  doi: 10.1099/ijsem.0.001755
– volume: 11
  start-page: 878
  year: 2020
  ident: B43
  article-title: The influences of bioinformatics tools and reference databases in analyzing the human oral microbial community
  publication-title: Genes
  doi: 10.3390/genes11080878
– volume: 4
  year: 2019
  ident: B100
  article-title: Performance of microbiome sequence inference methods in environments with varying biomass
  publication-title: mSystems
  doi: 10.1128/mSystems.00163-18
– volume: 25
  start-page: 100485
  year: 2019
  ident: B22
  article-title: Rapid profiling of tropical marine cyanobacterial communities
  publication-title: Reg Stud Mar Sci
  doi: 10.1016/j.rsma.2018.100485
– volume: 129
  start-page: 378
  year: 2020
  end-page: 388
  ident: B66
  article-title: Comparison of five assays for DNA extraction from bacterial cells in human faecal samples
  publication-title: J Appl Microbiol
  doi: 10.1111/jam.14608
– volume: 10
  year: 2015
  ident: B63
  article-title: The effects of freezing on faecal microbiota as determined using MiSeq sequencing and culture-based investigations
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0119355
– volume: 17
  start-page: 55
  year: 2016
  ident: B75
  article-title: A comprehensive benchmarking study of protocols and sequencing platforms for 16S rRNA community profiling
  publication-title: BMC Genomics
  doi: 10.1186/s12864-015-2194-9
– volume: 3
  year: 2017
  ident: B13
  article-title: An efficient strategy using k-mers to analyse 16S rRNA sequences
  publication-title: Heliyon
  doi: 10.1016/j.heliyon.2017.e00370
– volume: 9
  start-page: 2140
  year: 2018
  ident: B91
  article-title: Investigation of detection limits and the influence of DNA extraction and primer choice on the observed microbial communities in drinking water samples using 16S rRNA gene amplicon sequencing
  publication-title: Front Microbiol
  doi: 10.3389/fmicb.2018.02140
– volume: 36
  start-page: 190
  year: 2018
  end-page: 195
  ident: B95
  article-title: Retrieval of a million high-quality, full-length microbial 16S and 18S rRNA gene sequences without primer bias
  publication-title: Nat Biotechnol
  doi: 10.1038/nbt.4045
– volume: 136
  start-page: 947
  year: 2016
  end-page: 956
  ident: B86
  article-title: Skin microbiome surveys are strongly influenced by experimental design
  publication-title: J Invest Dermatol
  doi: 10.1016/j.jid.2016.01.016
– volume: 13
  start-page: 581
  year: 2016
  end-page: 583
  ident: B48
  article-title: DADA2: high-resolution sample inference from Illumina amplicon data
  publication-title: Nat Methods
  doi: 10.1038/nmeth.3869
– volume: 34
  start-page: 2371
  year: 2018
  end-page: 2375
  ident: B49
  article-title: Updating the 97% identity threshold for 16S ribosomal RNA OTUs
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bty113
– volume: 8
  year: 2013
  ident: B89
  article-title: The choice of PCR primers has great impact on assessments of bacterial community diversity and dynamics in a wastewater treatment plant
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0076431
– volume: 7
  year: 2012
  ident: B33
  article-title: Evaluation of 16S rDNA-Based Community Profiling for Human Microbiome Research
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0039315
– volume: 1
  year: 2016
  ident: B58
  article-title: mockrobiota: a public resource for microbiome bioinformatics benchmarking
  publication-title: mSystems
  doi: 10.1128/mSystems.00062-16
– volume: 21
  start-page: 2485
  year: 2019
  end-page: 2498
  ident: B25
  article-title: Confident phylogenetic identification of uncultured prokaryotes through long read amplicon sequencing of the 16S-ITS-23S rRNA operon
  publication-title: Environ Microbiol
  doi: 10.1111/1462-2920.14636
– volume: 7
  start-page: 335
  year: 2010
  end-page: 336
  ident: B46
  article-title: QIIME allows analysis of high-throughput community sequencing data
  publication-title: Nat Methods
  doi: 10.1038/nmeth.f.303
– volume: 19
  start-page: 1141
  year: 2009
  end-page: 1152
  ident: B2
  article-title: Microbial community profiling for human microbiome projects: tools, techniques, and challenges
  publication-title: Genome Res
  doi: 10.1101/gr.085464.108
– volume: 10
  start-page: 1869
  year: 2019
  ident: B29
  article-title: Sequencing of human genomes with nanopore technology
  publication-title: Nat Commun
  doi: 10.1038/s41467-019-09637-5
– volume: 159
  start-page: 514
  year: 2014
  end-page: 529
  ident: B80
  article-title: Transkingdom control of microbiota diurnal oscillations promotes metabolic homeostasis
  publication-title: Cell
  doi: 10.1016/j.cell.2014.09.048
– volume: 12
  start-page: 87
  year: 2014
  ident: B115
  article-title: Reagent and laboratory contamination can critically impact sequence-based microbiome analyses
  publication-title: BMC Biol
  doi: 10.1186/s12915-014-0087-z
– volume: 10
  year: 2015
  ident: B59
  article-title: Methods for improving human gut microbiome data by reducing variability through sample processing and storage of stool
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0134802
– volume: 4
  year: 2009
  ident: B35
  article-title: Comparative analysis of pyrosequencing and a phylogenetic microarray for exploring microbial community structures in the human distal intestine
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0006669
– ident: B109
  article-title: Martin M . 2011 . Cutadapt removes adapter sequences from high-throughput sequencing reads . EMBnet J 17 : 10 – 12 .
– volume: 11
  start-page: 487
  year: 2018
  end-page: 494
  ident: B16
  article-title: Newly designed 16S rRNA metabarcoding primers amplify diverse and novel archaeal taxa from the environment
  publication-title: Environ Microbiol Rep
  doi: 10.1111/1758-2229.12684
– volume: 37
  start-page: 852
  year: 2019
  end-page: 857
  ident: B47
  article-title: Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2
  publication-title: Nat Biotechnol
  doi: 10.1038/s41587-019-0209-9
– ident: B113
  article-title: Andrews S . 2010 . FastQC: a quality control tool for high throughput sequence data . http://www.bioinformatics.babraham.ac.uk/projects/fastqc/ .
– volume: 75
  start-page: 7537
  year: 2009
  end-page: 7541
  ident: B45
  article-title: Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities
  publication-title: Appl Environ Microbiol
  doi: 10.1128/AEM.01541-09
– volume: 7
  start-page: 1755
  year: 2019
  ident: B24
  article-title: Microbiota profiling with long amplicons using Nanopore sequencing: full-length 16S rRNA gene and the 16S-ITS-23S of the rrn operon [version 2; peer review: 2 approved, 3 approved with reservations]
  publication-title: F1000Res
  doi: 10.12688/f1000research.16817.2
– volume: 26
  start-page: 2460
  year: 2010
  end-page: 2461
  ident: B108
  article-title: Search and clustering orders of magnitude faster than BLAST
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btq461
– volume: 11
  start-page: 2639
  year: 2017
  end-page: 2643
  ident: B50
  article-title: Exact sequence variants should replace operational taxonomic units in marker-gene data analysis
  publication-title: ISME J
  doi: 10.1038/ismej.2017.119
– volume: 7
  start-page: 1297
  year: 2016
  ident: B12
  article-title: Evaluation of 16S rRNA gene primer pairs for monitoring microbial community structures showed high reproducibility within and low comparability between datasets generated with multiple archaeal and bacterial primer pairs
  publication-title: Front Microbiol
  doi: 10.3389/fmicb.2016.01297
– volume: 41
  year: 2013
  ident: B70
  article-title: Evaluation of general 16S ribosomal RNA gene PCR primers for classical and next-generation sequencing-based diversity studies
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gks808
– volume: 35
  start-page: 1077
  year: 2017
  end-page: 1086
  ident: B67
  article-title: Assessment of variation in microbial community amplicon sequencing by the Microbiome Quality Control (MBQC) project consortium
  publication-title: Nat Biotechnol
  doi: 10.1038/nbt.3981
– volume: 8
  start-page: 1784
  year: 2017
  ident: B4
  article-title: Meta-analysis of gut microbiome studies identifies disease-specific and shared responses
  publication-title: Nat Commun
  doi: 10.1038/s41467-017-01973-8
– volume: 73
  start-page: 5261
  year: 2007
  end-page: 5267
  ident: B107
  article-title: Naïve Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy
  publication-title: Appl Environ Microbiol
  doi: 10.1128/AEM.00062-07
– volume: 9
  start-page: 8897
  year: 2019
  ident: B61
  article-title: A guide for ex vivo handling and storage of stool samples intended for fecal microbiota transplantation
  publication-title: Sci Rep
  doi: 10.1038/s41598-019-45173-4
– volume: 5
  year: 2017
  ident: B11
  article-title: How conserved are the conserved 16S-rRNA regions?
  publication-title: PeerJ
  doi: 10.7717/peerj.3036
SSID ssj0001626676
Score 2.6049814
Snippet In 16S rRNA gene sequencing, certain bacterial genera were found to be underrepresented or even missing in taxonomic profiles when using unsuitable primer...
Short-amplicon 16S rRNA gene sequencing is currently the method of choice for studies investigating microbiomes. However, comparative studies on differences in...
SourceID doaj
pubmedcentral
proquest
asm2
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
SubjectTerms Research Article
Title Primer, Pipelines, Parameters: Issues in 16S rRNA Gene Sequencing
URI https://www.ncbi.nlm.nih.gov/pubmed/33627512
https://journals.asm.org/doi/10.1128/mSphere.01202-20
https://www.proquest.com/docview/2493457154
https://pubmed.ncbi.nlm.nih.gov/PMC8544895
https://doaj.org/article/9804953a3e334634aea3387124328974
Volume 6
WOSCitedRecordID wos000647699800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: Directory of Open Access Journals
  customDbUrl:
  eissn: 2379-5042
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001626676
  issn: 2379-5042
  databaseCode: DOA
  dateStart: 20160101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2379-5042
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001626676
  issn: 2379-5042
  databaseCode: M~E
  dateStart: 20160101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Biological Science Database
  customDbUrl:
  eissn: 2379-5042
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001626676
  issn: 2379-5042
  databaseCode: M7P
  dateStart: 20150101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 2379-5042
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001626676
  issn: 2379-5042
  databaseCode: 7X7
  dateStart: 20150101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2379-5042
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001626676
  issn: 2379-5042
  databaseCode: BENPR
  dateStart: 20150101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 2379-5042
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001626676
  issn: 2379-5042
  databaseCode: PIMPY
  dateStart: 20150101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3di9QwEB90VfDlOL_O-rFUEEGwbpu0ydS3PblDQZdyq7A-hTRNccHrHds94f57M0lv2T3kfPGllDahw2SGmWl--Q3Aa8lbFxS4SDJTY-JCQJGgSG2iM2PSlumsCez6X-RshotFWW21-iJMWKAHDoqblJgSBFJzy3kueK6tdlWVdGGJu1pBeiZQl_VsFVP-74rL04Xc7EsynJzO6Zi-fU-HRVlC7b1Huj9lO-HIs_b_LdW8jpjcCkHH-7A35I7xNMj8AG7Z7iHcC90kLx_BtCKq_tW7uFqe0ylz27tbTeArYtD8EIdGe_GyizMxj1cns2lMpNPxPKCpXQx7DN-Pj759_JQMHRIS7dKwdWJqWyDPaidXriW3DHXZ1lljkGUmLQzavC3QFI2uS2wEatHKlJW015Lm0iJ_AqPurLNPIday4cKSA2uWW441NVbHUjsnRYGsjOAN6UsNJt4rXz0wVINilVesYmkEkyuNKjPwjFO7i183zHi7mXEeODZuGHtIi7QZR-zY_oGzGTXYjPqXzUTw6mqJlfMm2iLRnT276JUrRnleSJdXRnAQlnzzKc6J0TljEcgdY9iRZfdNt_zpGbuxcFVwWTz7H8I_h_uMcDVkxfkLGK1XF_Yl3DW_18t-NYbbciH9Fcdw5_BoVp2MvWuMCdVauWfV56_Vjz8lpAxQ
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Primer%2C+Pipelines%2C+Parameters%3A+Issues+in+16S+rRNA+Gene+Sequencing&rft.jtitle=mSphere&rft.au=Isabel+Abellan-Schneyder&rft.au=Monica+S.+Matchado&rft.au=Sandra+Reitmeier&rft.au=Alina+Sommer&rft.date=2021-02-24&rft.pub=American+Society+for+Microbiology&rft.eissn=2379-5042&rft.volume=6&rft.issue=1&rft_id=info:doi/10.1128%2FmSphere.01202-20&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_9804953a3e334634aea3387124328974
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2379-5042&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2379-5042&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2379-5042&client=summon