Primer, Pipelines, Parameters: Issues in 16S rRNA Gene Sequencing
In 16S rRNA gene sequencing, certain bacterial genera were found to be underrepresented or even missing in taxonomic profiles when using unsuitable primer combinations, outdated reference databases, or inadequate pipeline settings. Concerning the last, quality thresholds as well as bioinformatic set...
Saved in:
| Published in: | mSphere Vol. 6; no. 1 |
|---|---|
| Main Authors: | , , , , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
United States
American Society for Microbiology
24.02.2021
|
| Subjects: | |
| ISSN: | 2379-5042, 2379-5042 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | In 16S rRNA gene sequencing, certain bacterial genera were found to be underrepresented or even missing in taxonomic profiles when using unsuitable primer combinations, outdated reference databases, or inadequate pipeline settings. Concerning the last, quality thresholds as well as bioinformatic settings (i.e., clustering approach, analysis pipeline, and specific adjustments such as truncation) are responsible for a number of observed differences between studies.
Short-amplicon 16S rRNA gene sequencing is currently the method of choice for studies investigating microbiomes. However, comparative studies on differences in procedures are scarce. We sequenced human stool samples and mock communities with increasing complexity using a variety of commonly used protocols. Short amplicons targeting different variable regions (V-regions) or ranges thereof (V1-V2, V1-V3, V3-V4, V4, V4-V5, V6-V8, and V7-V9) were investigated for differences in the composition outcome due to primer choices. Next, the influence of clustering (operational taxonomic units [OTUs], zero-radius OTUs [zOTUs], and amplicon sequence variants [ASVs]), different databases (GreenGenes, the Ribosomal Database Project, Silva, the genomic-based 16S rRNA Database, and The All-Species Living Tree), and bioinformatic settings on taxonomic assignment were also investigated. We present a systematic comparison across all typically used V-regions using well-established primers. While it is known that the primer choice has a significant influence on the resulting microbial composition, we show that microbial profiles generated using different primer pairs need independent validation of performance. Further, comparing data sets across V-regions using different databases might be misleading due to differences in nomenclature (e.g.,
Enterorhabdus
versus
Adlercreutzia
) and varying precisions in classification down to genus level. Overall, specific but important taxa are not picked up by certain primer pairs (e.g.,
Bacteroidetes
is missed using primers 515F-944R) or due to the database used (e.g.,
Acetatifactor
in GreenGenes and the genomic-based 16S rRNA Database). We found that appropriate truncation of amplicons is essential and different truncated-length combinations should be tested for each study. Finally, specific mock communities of sufficient and adequate complexity are highly recommended.
IMPORTANCE
In 16S rRNA gene sequencing, certain bacterial genera were found to be underrepresented or even missing in taxonomic profiles when using unsuitable primer combinations, outdated reference databases, or inadequate pipeline settings. Concerning the last, quality thresholds as well as bioinformatic settings (i.e., clustering approach, analysis pipeline, and specific adjustments such as truncation) are responsible for a number of observed differences between studies. Conclusions drawn by comparing one data set to another (e.g., between publications) appear to be problematic and require independent cross-validation using matching V-regions and uniform data processing. Therefore, we highlight the importance of a thought-out study design including sufficiently complex mock standards and appropriate V-region choice for the sample of interest. The use of processing pipelines and parameters must be tested beforehand. |
|---|---|
| AbstractList | Short-amplicon 16S rRNA gene sequencing is currently the method of choice for studies investigating microbiomes. However, comparative studies on differences in procedures are scarce. We sequenced human stool samples and mock communities with increasing complexity using a variety of commonly used protocols. Short amplicons targeting different variable regions (V-regions) or ranges thereof (V1-V2, V1-V3, V3-V4, V4, V4-V5, V6-V8, and V7-V9) were investigated for differences in the composition outcome due to primer choices. Next, the influence of clustering (operational taxonomic units [OTUs], zero-radius OTUs [zOTUs], and amplicon sequence variants [ASVs]), different databases (GreenGenes, the Ribosomal Database Project, Silva, the genomic-based 16S rRNA Database, and The All-Species Living Tree), and bioinformatic settings on taxonomic assignment were also investigated. We present a systematic comparison across all typically used V-regions using well-established primers. While it is known that the primer choice has a significant influence on the resulting microbial composition, we show that microbial profiles generated using different primer pairs need independent validation of performance. Further, comparing data sets across V-regions using different databases might be misleading due to differences in nomenclature (e.g., Enterorhabdus versus Adlercreutzia) and varying precisions in classification down to genus level. Overall, specific but important taxa are not picked up by certain primer pairs (e.g., Bacteroidetes is missed using primers 515F-944R) or due to the database used (e.g., Acetatifactor in GreenGenes and the genomic-based 16S rRNA Database). We found that appropriate truncation of amplicons is essential and different truncated-length combinations should be tested for each study. Finally, specific mock communities of sufficient and adequate complexity are highly recommended. IMPORTANCE In 16S rRNA gene sequencing, certain bacterial genera were found to be underrepresented or even missing in taxonomic profiles when using unsuitable primer combinations, outdated reference databases, or inadequate pipeline settings. Concerning the last, quality thresholds as well as bioinformatic settings (i.e., clustering approach, analysis pipeline, and specific adjustments such as truncation) are responsible for a number of observed differences between studies. Conclusions drawn by comparing one data set to another (e.g., between publications) appear to be problematic and require independent cross-validation using matching V-regions and uniform data processing. Therefore, we highlight the importance of a thought-out study design including sufficiently complex mock standards and appropriate V-region choice for the sample of interest. The use of processing pipelines and parameters must be tested beforehand. In 16S rRNA gene sequencing, certain bacterial genera were found to be underrepresented or even missing in taxonomic profiles when using unsuitable primer combinations, outdated reference databases, or inadequate pipeline settings. Concerning the last, quality thresholds as well as bioinformatic settings (i.e., clustering approach, analysis pipeline, and specific adjustments such as truncation) are responsible for a number of observed differences between studies. In 16S rRNA gene sequencing, certain bacterial genera were found to be underrepresented or even missing in taxonomic profiles when using unsuitable primer combinations, outdated reference databases, or inadequate pipeline settings. Concerning the last, quality thresholds as well as bioinformatic settings (i.e., clustering approach, analysis pipeline, and specific adjustments such as truncation) are responsible for a number of observed differences between studies. Short-amplicon 16S rRNA gene sequencing is currently the method of choice for studies investigating microbiomes. However, comparative studies on differences in procedures are scarce. We sequenced human stool samples and mock communities with increasing complexity using a variety of commonly used protocols. Short amplicons targeting different variable regions (V-regions) or ranges thereof (V1-V2, V1-V3, V3-V4, V4, V4-V5, V6-V8, and V7-V9) were investigated for differences in the composition outcome due to primer choices. Next, the influence of clustering (operational taxonomic units [OTUs], zero-radius OTUs [zOTUs], and amplicon sequence variants [ASVs]), different databases (GreenGenes, the Ribosomal Database Project, Silva, the genomic-based 16S rRNA Database, and The All-Species Living Tree), and bioinformatic settings on taxonomic assignment were also investigated. We present a systematic comparison across all typically used V-regions using well-established primers. While it is known that the primer choice has a significant influence on the resulting microbial composition, we show that microbial profiles generated using different primer pairs need independent validation of performance. Further, comparing data sets across V-regions using different databases might be misleading due to differences in nomenclature (e.g., Enterorhabdus versus Adlercreutzia ) and varying precisions in classification down to genus level. Overall, specific but important taxa are not picked up by certain primer pairs (e.g., Bacteroidetes is missed using primers 515F-944R) or due to the database used (e.g., Acetatifactor in GreenGenes and the genomic-based 16S rRNA Database). We found that appropriate truncation of amplicons is essential and different truncated-length combinations should be tested for each study. Finally, specific mock communities of sufficient and adequate complexity are highly recommended. IMPORTANCE In 16S rRNA gene sequencing, certain bacterial genera were found to be underrepresented or even missing in taxonomic profiles when using unsuitable primer combinations, outdated reference databases, or inadequate pipeline settings. Concerning the last, quality thresholds as well as bioinformatic settings (i.e., clustering approach, analysis pipeline, and specific adjustments such as truncation) are responsible for a number of observed differences between studies. Conclusions drawn by comparing one data set to another (e.g., between publications) appear to be problematic and require independent cross-validation using matching V-regions and uniform data processing. Therefore, we highlight the importance of a thought-out study design including sufficiently complex mock standards and appropriate V-region choice for the sample of interest. The use of processing pipelines and parameters must be tested beforehand. Short-amplicon 16S rRNA gene sequencing is currently the method of choice for studies investigating microbiomes. However, comparative studies on differences in procedures are scarce. We sequenced human stool samples and mock communities with increasing complexity using a variety of commonly used protocols. Short amplicons targeting different variable regions (V-regions) or ranges thereof (V1-V2, V1-V3, V3-V4, V4, V4-V5, V6-V8, and V7-V9) were investigated for differences in the composition outcome due to primer choices. Next, the influence of clustering (operational taxonomic units [OTUs], zero-radius OTUs [zOTUs], and amplicon sequence variants [ASVs]), different databases (GreenGenes, the Ribosomal Database Project, Silva, the genomic-based 16S rRNA Database, and The All-Species Living Tree), and bioinformatic settings on taxonomic assignment were also investigated. We present a systematic comparison across all typically used V-regions using well-established primers. While it is known that the primer choice has a significant influence on the resulting microbial composition, we show that microbial profiles generated using different primer pairs need independent validation of performance. Further, comparing data sets across V-regions using different databases might be misleading due to differences in nomenclature (e.g., Enterorhabdus versus Adlercreutzia) and varying precisions in classification down to genus level. Overall, specific but important taxa are not picked up by certain primer pairs (e.g., Bacteroidetes is missed using primers 515F-944R) or due to the database used (e.g., Acetatifactor in GreenGenes and the genomic-based 16S rRNA Database). We found that appropriate truncation of amplicons is essential and different truncated-length combinations should be tested for each study. Finally, specific mock communities of sufficient and adequate complexity are highly recommended.IMPORTANCE In 16S rRNA gene sequencing, certain bacterial genera were found to be underrepresented or even missing in taxonomic profiles when using unsuitable primer combinations, outdated reference databases, or inadequate pipeline settings. Concerning the last, quality thresholds as well as bioinformatic settings (i.e., clustering approach, analysis pipeline, and specific adjustments such as truncation) are responsible for a number of observed differences between studies. Conclusions drawn by comparing one data set to another (e.g., between publications) appear to be problematic and require independent cross-validation using matching V-regions and uniform data processing. Therefore, we highlight the importance of a thought-out study design including sufficiently complex mock standards and appropriate V-region choice for the sample of interest. The use of processing pipelines and parameters must be tested beforehand.Short-amplicon 16S rRNA gene sequencing is currently the method of choice for studies investigating microbiomes. However, comparative studies on differences in procedures are scarce. We sequenced human stool samples and mock communities with increasing complexity using a variety of commonly used protocols. Short amplicons targeting different variable regions (V-regions) or ranges thereof (V1-V2, V1-V3, V3-V4, V4, V4-V5, V6-V8, and V7-V9) were investigated for differences in the composition outcome due to primer choices. Next, the influence of clustering (operational taxonomic units [OTUs], zero-radius OTUs [zOTUs], and amplicon sequence variants [ASVs]), different databases (GreenGenes, the Ribosomal Database Project, Silva, the genomic-based 16S rRNA Database, and The All-Species Living Tree), and bioinformatic settings on taxonomic assignment were also investigated. We present a systematic comparison across all typically used V-regions using well-established primers. While it is known that the primer choice has a significant influence on the resulting microbial composition, we show that microbial profiles generated using different primer pairs need independent validation of performance. Further, comparing data sets across V-regions using different databases might be misleading due to differences in nomenclature (e.g., Enterorhabdus versus Adlercreutzia) and varying precisions in classification down to genus level. Overall, specific but important taxa are not picked up by certain primer pairs (e.g., Bacteroidetes is missed using primers 515F-944R) or due to the database used (e.g., Acetatifactor in GreenGenes and the genomic-based 16S rRNA Database). We found that appropriate truncation of amplicons is essential and different truncated-length combinations should be tested for each study. Finally, specific mock communities of sufficient and adequate complexity are highly recommended.IMPORTANCE In 16S rRNA gene sequencing, certain bacterial genera were found to be underrepresented or even missing in taxonomic profiles when using unsuitable primer combinations, outdated reference databases, or inadequate pipeline settings. Concerning the last, quality thresholds as well as bioinformatic settings (i.e., clustering approach, analysis pipeline, and specific adjustments such as truncation) are responsible for a number of observed differences between studies. Conclusions drawn by comparing one data set to another (e.g., between publications) appear to be problematic and require independent cross-validation using matching V-regions and uniform data processing. Therefore, we highlight the importance of a thought-out study design including sufficiently complex mock standards and appropriate V-region choice for the sample of interest. The use of processing pipelines and parameters must be tested beforehand. Short-amplicon 16S rRNA gene sequencing is currently the method of choice for studies investigating microbiomes. However, comparative studies on differences in procedures are scarce. We sequenced human stool samples and mock communities with increasing complexity using a variety of commonly used protocols. Short amplicons targeting different variable regions (V-regions) or ranges thereof (V1-V2, V1-V3, V3-V4, V4, V4-V5, V6-V8, and V7-V9) were investigated for differences in the composition outcome due to primer choices. Next, the influence of clustering (operational taxonomic units [OTUs], zero-radius OTUs [zOTUs], and amplicon sequence variants [ASVs]), different databases (GreenGenes, the Ribosomal Database Project, Silva, the genomic-based 16S rRNA Database, and The All-Species Living Tree), and bioinformatic settings on taxonomic assignment were also investigated. We present a systematic comparison across all typically used V-regions using well-established primers. While it is known that the primer choice has a significant influence on the resulting microbial composition, we show that microbial profiles generated using different primer pairs need independent validation of performance. Further, comparing data sets across V-regions using different databases might be misleading due to differences in nomenclature (e.g., versus ) and varying precisions in classification down to genus level. Overall, specific but important taxa are not picked up by certain primer pairs (e.g., is missed using primers 515F-944R) or due to the database used (e.g., in GreenGenes and the genomic-based 16S rRNA Database). We found that appropriate truncation of amplicons is essential and different truncated-length combinations should be tested for each study. Finally, specific mock communities of sufficient and adequate complexity are highly recommended. In 16S rRNA gene sequencing, certain bacterial genera were found to be underrepresented or even missing in taxonomic profiles when using unsuitable primer combinations, outdated reference databases, or inadequate pipeline settings. Concerning the last, quality thresholds as well as bioinformatic settings (i.e., clustering approach, analysis pipeline, and specific adjustments such as truncation) are responsible for a number of observed differences between studies. Conclusions drawn by comparing one data set to another (e.g., between publications) appear to be problematic and require independent cross-validation using matching V-regions and uniform data processing. Therefore, we highlight the importance of a thought-out study design including sufficiently complex mock standards and appropriate V-region choice for the sample of interest. The use of processing pipelines and parameters must be tested beforehand. |
| Author | Sewald, Zeno Matchado, Monica S. Sommer, Alina Neuhaus, Klaus Abellan-Schneyder, Isabel List, Markus Baumbach, Jan Reitmeier, Sandra |
| Author_xml | – sequence: 1 givenname: Isabel surname: Abellan-Schneyder fullname: Abellan-Schneyder, Isabel organization: Core Facility Microbiome, ZIEL—Institute for Food & Health, Technische Universität München, Freising, Germany – sequence: 2 givenname: Monica S. orcidid: 0000-0002-2058-7924 surname: Matchado fullname: Matchado, Monica S. organization: Chair of Experimental Bioinformatics, TUM School of Life Sciences Weihenstephan, Technische Universität München, Freising, Germany – sequence: 3 givenname: Sandra surname: Reitmeier fullname: Reitmeier, Sandra organization: Core Facility Microbiome, ZIEL—Institute for Food & Health, Technische Universität München, Freising, Germany – sequence: 4 givenname: Alina surname: Sommer fullname: Sommer, Alina organization: Core Facility Microbiome, ZIEL—Institute for Food & Health, Technische Universität München, Freising, Germany – sequence: 5 givenname: Zeno surname: Sewald fullname: Sewald, Zeno organization: Core Facility Microbiome, ZIEL—Institute for Food & Health, Technische Universität München, Freising, Germany – sequence: 6 givenname: Jan surname: Baumbach fullname: Baumbach, Jan organization: Chair of Experimental Bioinformatics, TUM School of Life Sciences Weihenstephan, Technische Universität München, Freising, Germany, Computational Biomedicine Lab, Department of Mathematics and Computer Science, University of Southern Denmark, Odense, Denmark, Chair of Computational Systems Biology, University of Hamburg, Hamburg, Germany – sequence: 7 givenname: Markus orcidid: 0000-0002-0941-4168 surname: List fullname: List, Markus organization: Chair of Experimental Bioinformatics, TUM School of Life Sciences Weihenstephan, Technische Universität München, Freising, Germany – sequence: 8 givenname: Klaus orcidid: 0000-0002-6020-2814 surname: Neuhaus fullname: Neuhaus, Klaus organization: Core Facility Microbiome, ZIEL—Institute for Food & Health, Technische Universität München, Freising, Germany |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33627512$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9kc1v1DAQxS1URMvSOyeUIwdS_G2HA9KqgrJSBRULZ8txJluvEnuxEyT-e7zdLWqR4DSj8Zufn-Y9RychBkDoJcEXhFD9dlzvbiHBBSYU05riJ-iMMtXUAnN68qA_Rec5bzHGRFIplXyGThmTVAlCz9DyJvkR0pvqxu9g8AFyaW2yI0yQ8rtqlfMMufKhInJdpa-fl9UVBKjW8GOG4HzYvEBPeztkOD_WBfr-8cO3y0_19Zer1eXyurZCyql2LQjNSNs54FYxoNo2fUs6pylxWDgNvBfaic62je6ktrJXmDai2MRcgWYLtDpwu2i3Zlds2_TLROvN3SCmjbFp8m4A02jMG8EsA8a4ZNyCZUwrQjmjulG8sN4fWLu5HaFYClOywyPo45fgb80m_jRacK4LeoFeHwEplkPkyYw-OxgGGyDO2VDeMC4UEfu_6oPU5pGabZxTKGcyBJt9iuaYorlL0VBc9K8eevtj6j6zIpAHgUsx5wS9cX6yk497q374Hxn_tXjP_ufKbyG4uxs |
| CitedBy_id | crossref_primary_10_1128_aem_02108_22 crossref_primary_10_3389_fmicb_2024_1437098 crossref_primary_10_1055_s_0044_1779025 crossref_primary_10_3748_wjg_v29_i6_967 crossref_primary_10_1016_j_csbj_2025_03_030 crossref_primary_10_3390_ijms26168090 crossref_primary_10_3390_fermentation9100911 crossref_primary_10_1016_j_jece_2025_119246 crossref_primary_10_3389_fmicb_2025_1633360 crossref_primary_10_1007_s43657_024_00164_y crossref_primary_10_1093_nutrit_nuad093 crossref_primary_10_1016_j_cbd_2025_101628 crossref_primary_10_1186_s40793_024_00578_1 crossref_primary_10_4014_jmb_2412_12001 crossref_primary_10_1007_s12088_021_00962_2 crossref_primary_10_70389_PJSPS_100002 crossref_primary_10_1002_ieam_4812 crossref_primary_10_1089_fpd_2022_0027 crossref_primary_10_3389_fmars_2023_1199116 crossref_primary_10_1016_j_neuropharm_2022_109318 crossref_primary_10_1128_aem_00987_24 crossref_primary_10_1038_s41522_024_00641_2 crossref_primary_10_1016_j_ecss_2025_109485 crossref_primary_10_1093_advances_nmac099 crossref_primary_10_3389_fmicb_2025_1558379 crossref_primary_10_1016_j_jhazmat_2025_138639 crossref_primary_10_24072_pcjournal_2 crossref_primary_10_1016_j_egg_2023_100206 crossref_primary_10_30699_ijmm_18_2_80 crossref_primary_10_3389_fmicb_2024_1324188 crossref_primary_10_3389_fmicb_2025_1553124 crossref_primary_10_1016_j_foodcont_2025_111518 crossref_primary_10_3390_fib12030029 crossref_primary_10_1016_j_ijfoodmicro_2023_110523 crossref_primary_10_1016_j_isci_2025_112208 crossref_primary_10_1111_jmp_12732 crossref_primary_10_36233_0372_9311_629 crossref_primary_10_70389_PJSPS_100012 crossref_primary_10_3390_ijms26031180 crossref_primary_10_1155_ijm_7563096 crossref_primary_10_1186_s40168_024_01890_1 crossref_primary_10_1099_mgen_0_001203 crossref_primary_10_1128_spectrum_02017_21 crossref_primary_10_3390_foods12112105 crossref_primary_10_1098_rsos_230963 crossref_primary_10_3389_fcimb_2024_1411482 crossref_primary_10_3389_fmicb_2025_1580531 crossref_primary_10_3389_fcimb_2021_770668 crossref_primary_10_1007_s00284_022_02956_9 crossref_primary_10_3389_fmicb_2023_1263731 crossref_primary_10_1016_j_euroneuro_2024_07_004 crossref_primary_10_1007_s11912_024_01520_x crossref_primary_10_3390_microorganisms9061251 crossref_primary_10_1177_00220345241303880 crossref_primary_10_3390_pathogens13100826 crossref_primary_10_1016_j_pnpbp_2025_111454 crossref_primary_10_5582_bst_2024_01393 crossref_primary_10_1007_s10529_024_03509_9 crossref_primary_10_1371_journal_pone_0301016 crossref_primary_10_1038_s41598_023_36533_2 crossref_primary_10_1016_j_heliyon_2022_e09693 crossref_primary_10_1016_j_aquatox_2025_107351 crossref_primary_10_3389_fmicb_2024_1504444 crossref_primary_10_3390_microorganisms11040955 crossref_primary_10_1186_s40517_023_00269_z crossref_primary_10_1007_s00414_024_03383_0 crossref_primary_10_1016_j_ecolind_2025_113351 crossref_primary_10_1038_s41598_022_13871_1 crossref_primary_10_1016_j_resmic_2022_103936 crossref_primary_10_1128_msystems_00950_23 crossref_primary_10_1038_s41598_022_14925_0 crossref_primary_10_3389_fmicb_2022_969757 crossref_primary_10_3389_fmicb_2023_1197837 crossref_primary_10_1016_j_hal_2024_102580 crossref_primary_10_3389_fmicb_2023_1201064 crossref_primary_10_1128_msystems_01358_24 crossref_primary_10_1016_j_tplants_2024_12_002 crossref_primary_10_3389_fmicb_2025_1481197 crossref_primary_10_3390_microorganisms10091763 crossref_primary_10_3389_fcimb_2021_723821 crossref_primary_10_3390_f14091848 crossref_primary_10_1128_aem_00453_22 crossref_primary_10_1016_j_scitotenv_2023_164797 crossref_primary_10_3389_fmicb_2024_1454910 crossref_primary_10_1186_s40168_024_01769_1 crossref_primary_10_1016_j_heliyon_2024_e38846 crossref_primary_10_3390_life14101219 crossref_primary_10_3390_microorganisms11010211 crossref_primary_10_4142_jvs_24181 crossref_primary_10_1128_aem_01871_24 crossref_primary_10_1016_j_jenvman_2024_122136 crossref_primary_10_1089_cmb_2024_0615 crossref_primary_10_3389_fendo_2024_1344152 crossref_primary_10_7717_peerj_18099 crossref_primary_10_3390_cancers15205045 crossref_primary_10_1128_aem_00966_25 crossref_primary_10_3389_fmicb_2024_1498681 crossref_primary_10_1002_ame2_12202 crossref_primary_10_1080_15257770_2025_2479620 crossref_primary_10_1097_MD_0000000000034978 crossref_primary_10_1007_s00248_024_02408_w crossref_primary_10_1016_j_kjs_2024_100309 crossref_primary_10_1007_s10811_025_03455_7 crossref_primary_10_1186_s12879_025_10825_6 crossref_primary_10_1111_gfs_12725 crossref_primary_10_3390_biomedicines12102409 crossref_primary_10_1007_s00248_025_02491_7 crossref_primary_10_1016_j_jwpe_2024_104850 crossref_primary_10_1038_s41598_025_14230_6 crossref_primary_10_1038_s41598_024_83410_7 crossref_primary_10_1093_ismejo_wrae092 crossref_primary_10_1038_s41598_023_46062_7 crossref_primary_10_3390_ijms26104690 crossref_primary_10_1002_2211_5463_13869 crossref_primary_10_3390_biology14010029 crossref_primary_10_1016_j_fsi_2025_110394 crossref_primary_10_1128_msystems_00399_24 crossref_primary_10_1016_j_expneurol_2025_115406 crossref_primary_10_1016_j_ebiom_2024_105362 crossref_primary_10_3389_fmars_2025_1587729 crossref_primary_10_1128_aem_00524_25 crossref_primary_10_3390_microorganisms10101961 crossref_primary_10_1007_s00604_025_07159_0 crossref_primary_10_1016_j_ecoenv_2024_116226 crossref_primary_10_1128_msystems_00518_21 crossref_primary_10_3390_life12020221 crossref_primary_10_3390_fermentation10100529 crossref_primary_10_1128_spectrum_00931_24 crossref_primary_10_1016_j_marpolbul_2025_118489 crossref_primary_10_1007_s00203_022_03207_y crossref_primary_10_1007_s11894_024_00932_w crossref_primary_10_1016_j_fbio_2022_102308 crossref_primary_10_1093_ismeco_ycaf094 crossref_primary_10_1016_j_csbj_2025_08_015 crossref_primary_10_3390_genes13122280 crossref_primary_10_3390_plants12213678 crossref_primary_10_1016_j_clnesp_2025_08_008 crossref_primary_10_3389_frmbi_2025_1657750 crossref_primary_10_1128_jcm_00837_22 crossref_primary_10_1016_j_micres_2025_128325 crossref_primary_10_1111_mec_16285 crossref_primary_10_4081_ijfs_2025_13171 crossref_primary_10_1016_j_jenvman_2025_127000 crossref_primary_10_3390_horticulturae8080752 crossref_primary_10_2903_sp_efsa_2024_EN_8602 crossref_primary_10_3390_microorganisms13081861 crossref_primary_10_3390_diagnostics13172835 crossref_primary_10_1002_imo2_9 crossref_primary_10_1128_spectrum_04048_22 crossref_primary_10_1038_s41564_022_01121_z crossref_primary_10_1038_s43705_023_00325_6 crossref_primary_10_3390_cancers14246096 crossref_primary_10_1126_science_adk4271 crossref_primary_10_1128_spectrum_03512_23 crossref_primary_10_3390_microorganisms12112119 crossref_primary_10_1128_spectrum_01176_23 crossref_primary_10_1371_journal_pone_0324351 crossref_primary_10_3389_fmicb_2021_644662 crossref_primary_10_3390_ijms24021100 crossref_primary_10_1016_j_critrevonc_2024_104545 crossref_primary_10_23736_S2724_5985_24_03799_9 crossref_primary_10_4014_jmb_2406_06048 crossref_primary_10_3389_fcimb_2024_1413018 crossref_primary_10_1016_j_tifs_2025_105113 crossref_primary_10_3389_fmicb_2025_1599847 crossref_primary_10_1128_cmr_00060_22 crossref_primary_10_1038_s41433_024_03589_x crossref_primary_10_3389_fcimb_2025_1512891 crossref_primary_10_1016_j_gastha_2023_03_003 crossref_primary_10_38211_jms_2025_04_84 crossref_primary_10_1002_eji_202350503 crossref_primary_10_3389_fmicb_2023_1215236 crossref_primary_10_3390_ani13193107 crossref_primary_10_1016_j_psyneuen_2024_107208 crossref_primary_10_1016_j_rhisph_2023_100752 crossref_primary_10_1016_j_apsoil_2024_105570 crossref_primary_10_3390_pathogens12030488 crossref_primary_10_3389_fped_2022_886627 crossref_primary_10_1016_j_jenvman_2025_126196 crossref_primary_10_3390_ijms24119307 crossref_primary_10_1016_j_micpath_2024_106889 crossref_primary_10_1039_D5EW00091B crossref_primary_10_1016_j_jece_2025_118642 crossref_primary_10_1128_spectrum_00798_21 crossref_primary_10_48022_mbl_2112_12005 crossref_primary_10_1111_exd_14951 crossref_primary_10_1186_s40168_024_01802_3 crossref_primary_10_14293_NSM_25_1_0004 crossref_primary_10_1186_s42523_025_00429_5 crossref_primary_10_1080_00207454_2025_2529238 crossref_primary_10_1080_19490976_2025_2516699 crossref_primary_10_1128_aem_01537_24 crossref_primary_10_1038_s42003_024_07158_6 crossref_primary_10_1073_pnas_2104429118 crossref_primary_10_1111_1758_2229_13145 crossref_primary_10_1016_j_theriogenology_2023_09_016 crossref_primary_10_3389_fphar_2025_1597564 crossref_primary_10_1128_spectrum_00583_25 crossref_primary_10_1016_j_envpol_2023_122215 crossref_primary_10_1186_s40168_024_01812_1 crossref_primary_10_1038_s41598_023_48804_z crossref_primary_10_1159_000534284 crossref_primary_10_3390_microorganisms13010016 crossref_primary_10_3389_fmicb_2022_875930 crossref_primary_10_1016_j_ejps_2025_107153 crossref_primary_10_1186_s40793_024_00592_3 crossref_primary_10_3389_fmicb_2024_1519733 crossref_primary_10_3390_microorganisms11071633 crossref_primary_10_1080_07060661_2023_2290041 crossref_primary_10_1186_s12866_025_03869_w crossref_primary_10_1038_s41522_025_00686_x crossref_primary_10_1099_jmm_0_001756 crossref_primary_10_1186_s12866_021_02391_z crossref_primary_10_1039_D2FO01619B crossref_primary_10_1016_j_jenvman_2025_126778 crossref_primary_10_1002_cam4_6298 crossref_primary_10_3390_microorganisms10081671 crossref_primary_10_3390_cells10113226 |
| Cites_doi | 10.3389/fmicb.2017.00494 10.1128/mSphere.00410-18 10.1371/journal.pone.0039315 10.1128/AEM.01541-09 10.3390/genes11080878 10.1038/nature11209 10.1158/1055-9965.EPI-15-0951 10.1186/s12864-017-3501-4 10.1128/mSystems.00023-18 10.1111/1462-2920.13023 10.1016/j.mimet.2019.105811 10.1073/pnas.87.12.4576 10.1038/s41467-019-13036-1 10.3389/fmicb.2020.00972 10.1016/j.ijmm.2016.03.005 10.1111/1758-2229.12684 10.1371/journal.pone.0094249 10.1016/j.mimet.2003.08.009 10.3389/fmicb.2016.01297 10.1038/s41587-019-0209-9 10.3389/fmicb.2015.00771 10.1371/journal.pone.0076431 10.1038/s41467-019-09637-5 10.1186/s13059-015-0841-8 10.1093/bioinformatics/btq461 10.1016/j.xpro.2020.100148 10.1093/nar/gks808 10.7717/peerj.2836 10.1016/j.ijfoodmicro.2017.10.028 10.1128/AEM.03006-05 10.1186/s12864-017-4229-x 10.1038/s41598-019-53599-z 10.3389/fmicb.2019.01606 10.1016/j.syapm.2008.07.001 10.1038/ismej.2017.119 10.1186/s12864-015-2194-9 10.1073/pnas.1519288112 10.1016/j.jid.2016.01.016 10.1038/nmeth.2604 10.1111/1462-2920.14636 10.3389/fmicb.2018.02140 10.1186/s13742-016-0111-z 10.1038/nmeth.3869 10.1038/nbt.3601 10.14806/ej.17.1.200 10.1186/s12859-016-0992-y 10.1093/bioinformatics/bty113 10.1038/s41598-018-34294-x 10.1093/nar/gkt1244 10.1002/2211-5463.12590 10.1111/j.1365-294X.2012.05538.x 10.1128/IAI.00493-09 10.1101/gr.085464.108 10.1128/AEM.63.7.2802-2813.1997 10.3748/wjg.v16.i33.4135 10.1128/mBio.01557-20 10.3389/fmicb.2019.02796 10.1016/j.cell.2014.09.048 10.3389/fmicb.2020.01262 10.1128/AEM.01043-13 10.1038/nbt.4045 10.1371/journal.pone.0227434 10.1038/s41467-017-01973-8 10.1128/mSystems.00163-18 10.1371/journal.pone.0148047 10.1186/s40168-019-0743-1 10.1101/081257 10.1128/AEM.05220-11 10.1186/s40168-018-0470-z 10.1371/journal.pone.0134802 10.1038/nbt.1495 10.1128/AEM.01368-19 10.3389/fgene.2019.00653 10.1093/nar/gkm541 10.1073/pnas.1000080107 10.1093/nar/gks1219 10.1038/srep16350 10.5808/GI.2018.16.4.e24 10.1371/journal.pone.0119355 10.1016/j.anaerobe.2014.04.006 10.1371/journal.pone.0071360 10.1128/JCM.01228-07 10.1016/j.gpb.2015.08.002 10.1038/nbt.3960 10.1038/s41598-019-45173-4 10.1186/s40168-017-0396-x 10.1093/nar/29.1.181 10.1099/ijsem.0.001755 10.1186/s12915-014-0087-z 10.1111/jam.14608 10.4172/jpb.1000381 10.1016/j.chom.2020.06.004 10.1186/s40168-015-0087-4 10.1111/j.1550-7408.1999.tb04612.x 10.1128/mSystems.00062-16 10.1128/mSystems.00547-19 10.1126/science.1162986 10.1038/s41598-018-22491-7 10.1128/AEM.00062-07 10.1016/j.heliyon.2017.e00370 10.1038/nbt.3981 10.1093/gigascience/giy054 10.1186/s40168-020-00841-w 10.7717/peerj.3036 10.1093/nar/gkz569 10.12688/f1000research.16817.2 10.1016/j.rsma.2018.100485 10.1038/nmicrobiol.2016.160 10.1128/mSystems.00290-19 10.1038/s41598-018-30515-5 10.1038/s41587-020-0439-x 10.1016/j.chom.2016.04.017 10.1371/journal.pone.0006669 10.1038/nmeth.f.303 10.1038/sdata.2019.7 |
| ContentType | Journal Article |
| Copyright | Copyright © 2021 Abellan-Schneyder et al. Copyright © 2021 Abellan-Schneyder et al. 2021 Abellan-Schneyder et al. |
| Copyright_xml | – notice: Copyright © 2021 Abellan-Schneyder et al. – notice: Copyright © 2021 Abellan-Schneyder et al. 2021 Abellan-Schneyder et al. |
| DBID | AAYXX CITATION NPM 7X8 5PM DOA |
| DOI | 10.1128/mSphere.01202-20 |
| DatabaseName | CrossRef PubMed MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
| DatabaseTitleList | CrossRef MEDLINE - Academic PubMed |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Biology |
| EISSN | 2379-5042 |
| Editor | Tringe, Susannah Green |
| Editor_xml | – sequence: 1 givenname: Susannah Green surname: Tringe fullname: Tringe, Susannah Green |
| ExternalDocumentID | oai_doaj_org_article_9804953a3e334634aea3387124328974 PMC8544895 mSphere01202-20 33627512 10_1128_mSphere_01202_20 |
| Genre | Research Support, Non-U.S. Gov't Journal Article |
| GrantInformation_xml | – fundername: Research Foundation of Dairy Science at TUM grantid: Research grant – fundername: VILLUM Young Investigator Grant grantid: 13154 – fundername: ZIEL - Institute for Food & Health grantid: Doctorate position grant – fundername: German Science Foundation grantid: SFB1371 – fundername: ; grantid: Research grant – fundername: ; grantid: 13154 – fundername: ; grantid: Doctorate position grant – fundername: ; grantid: SFB1371 |
| GroupedDBID | 0R~ 53G 5VS 7X7 8FE 8FH 8FI 8FJ AAFWJ AAGFI AAUOK AAYXX ABUWG ADBBV AFFHD AFKRA AFPKN ALMA_UNASSIGNED_HOLDINGS AOIJS BBNVY BCNDV BENPR BHPHI BPHCQ BVXVI CCPQU CITATION DIK EBS FRP FYUFA GROUPED_DOAJ H13 HCIFZ HMCUK HYE KQ8 LK8 M48 M7P M~E O9- OK1 PGMZT PHGZM PHGZT PIMPY PQGLB PQQKQ PROAC R9- RHI RPM RSF UKHRP 3V. ALIPV NPM RHF 0R ADACO BBAFP BXI PQEST PQUKI PRINS 7X8 5PM |
| ID | FETCH-LOGICAL-a566t-cbe5831bdce4a73e28a9fb1dc821c05c8e4f58c5dab98d68a6f70295751047e83 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 290 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000647699800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2379-5042 |
| IngestDate | Fri Oct 03 12:50:21 EDT 2025 Tue Nov 04 01:48:11 EST 2025 Sun Nov 09 11:27:32 EST 2025 Tue Dec 28 13:59:22 EST 2021 Thu Jan 02 22:57:12 EST 2025 Sat Nov 29 03:33:47 EST 2025 Tue Nov 18 22:14:28 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Keywords | databases variable regions bioinformatic settings mock communities 16S rRNA gene sequencing amplicon sequencing clustering microbiome |
| Language | English |
| License | Copyright © 2021 Abellan-Schneyder et al. This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International license. https://creativecommons.org/licenses/by/4.0 This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International license. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-a566t-cbe5831bdce4a73e28a9fb1dc821c05c8e4f58c5dab98d68a6f70295751047e83 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 Citation Abellan-Schneyder I, Matchado MS, Reitmeier S, Sommer A, Sewald Z, Baumbach J, List M, Neuhaus K. 2021. Primer, pipelines, parameters: issues in 16S rRNA gene sequencing. mSphere 6:e01202-20. https://doi.org/10.1128/mSphere.01202-20. |
| ORCID | 0000-0002-6020-2814 0000-0002-2058-7924 0000-0002-0941-4168 |
| OpenAccessLink | https://doaj.org/article/9804953a3e334634aea3387124328974 |
| PMID | 33627512 |
| PQID | 2493457154 |
| PQPubID | 23479 |
| PageCount | 22 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_9804953a3e334634aea3387124328974 pubmedcentral_primary_oai_pubmedcentral_nih_gov_8544895 proquest_miscellaneous_2493457154 asm2_journals_10_1128_mSphere_01202_20 pubmed_primary_33627512 crossref_citationtrail_10_1128_mSphere_01202_20 crossref_primary_10_1128_mSphere_01202_20 |
| PublicationCentury | 2000 |
| PublicationDate | 20210224 |
| PublicationDateYYYYMMDD | 2021-02-24 |
| PublicationDate_xml | – month: 2 year: 2021 text: 20210224 day: 24 |
| PublicationDecade | 2020 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States – name: 1752 N St., N.W., Washington, DC |
| PublicationTitle | mSphere |
| PublicationTitleAbbrev | mSphere |
| PublicationTitleAlternate | mSphere |
| PublicationYear | 2021 |
| Publisher | American Society for Microbiology |
| Publisher_xml | – name: American Society for Microbiology |
| References | e_1_3_2_28_2 e_1_3_2_20_2 e_1_3_2_43_2 e_1_3_2_62_2 e_1_3_2_85_2 e_1_3_2_24_2 e_1_3_2_47_2 e_1_3_2_66_2 e_1_3_2_89_2 e_1_3_2_100_2 e_1_3_2_104_2 e_1_3_2_81_2 e_1_3_2_108_2 e_1_3_2_16_2 e_1_3_2_7_2 e_1_3_2_39_2 e_1_3_2_54_2 e_1_3_2_31_2 e_1_3_2_73_2 e_1_3_2_12_2 e_1_3_2_58_2 e_1_3_2_96_2 e_1_3_2_3_2 e_1_3_2_35_2 e_1_3_2_77_2 e_1_3_2_112_2 e_1_3_2_92_2 e_1_3_2_50_2 e_1_3_2_116_2 e_1_3_2_48_2 e_1_3_2_29_2 e_1_3_2_40_2 e_1_3_2_86_2 e_1_3_2_21_2 e_1_3_2_63_2 e_1_3_2_44_2 e_1_3_2_25_2 e_1_3_2_67_2 e_1_3_2_82_2 e_1_3_2_103_2 e_1_3_2_107_2 e_1_3_2_17_2 e_1_3_2_59_2 e_1_3_2_6_2 e_1_3_2_32_2 e_1_3_2_51_2 e_1_3_2_74_2 e_1_3_2_13_2 e_1_3_2_36_2 e_1_3_2_55_2 e_1_3_2_78_2 e_1_3_2_97_2 e_1_3_2_2_2 e_1_3_2_93_2 e_1_3_2_115_2 e_1_3_2_70_2 e_1_3_2_111_2 e_1_3_2_119_2 e_1_3_2_26_2 e_1_3_2_49_2 e_1_3_2_41_2 e_1_3_2_64_2 e_1_3_2_87_2 e_1_3_2_22_2 e_1_3_2_45_2 e_1_3_2_68_2 e_1_3_2_60_2 e_1_3_2_83_2 e_1_3_2_102_2 e_1_3_2_106_2 e_1_3_2_9_2 e_1_3_2_37_2 e_1_3_2_18_2 e_1_3_2_75_2 e_1_3_2_10_2 e_1_3_2_52_2 e_1_3_2_5_2 e_1_3_2_33_2 e_1_3_2_79_2 e_1_3_2_14_2 e_1_3_2_56_2 e_1_3_2_98_2 e_1_3_2_114_2 e_1_3_2_94_2 e_1_3_2_71_2 e_1_3_2_110_2 e_1_3_2_90_2 e_1_3_2_118_2 e_1_3_2_27_2 e_1_3_2_65_2 e_1_3_2_42_2 e_1_3_2_84_2 e_1_3_2_23_2 e_1_3_2_69_2 e_1_3_2_46_2 e_1_3_2_88_2 e_1_3_2_61_2 e_1_3_2_120_2 e_1_3_2_80_2 e_1_3_2_101_2 e_1_3_2_109_2 e_1_3_2_105_2 e_1_3_2_15_2 e_1_3_2_38_2 e_1_3_2_8_2 e_1_3_2_19_2 Shah M (e_1_3_2_91_2) 2014; 2 e_1_3_2_30_2 e_1_3_2_53_2 e_1_3_2_76_2 e_1_3_2_99_2 e_1_3_2_11_2 e_1_3_2_34_2 e_1_3_2_57_2 e_1_3_2_95_2 e_1_3_2_4_2 e_1_3_2_113_2 e_1_3_2_72_2 e_1_3_2_117_2 Johnson, JS, Spakowicz, DJ, Hong, BY, Petersen, LM, Demkowicz, P, Chen, L, Leopold, SR, Hanson, BM, Agresta, HO, Gerstein, M, Sodergren, E, Weinstock, GM (B27) 2019; 10 Bolyen, E, Rideout, JR, Dillon, MR, Bokulich, NA, Abnet, CC, Al-Ghalith, GA, Alexander, H, Alm, EJ, Arumugam, M, Asnicar, F, Bai, Y, Bisanz, JE, Bittinger, K, Brejnrod, A, Brislawn, CJ, Brown, CT, Callahan, BJ, Caraballo-Rodríguez, AM, Chase, J, Cope, EK, Da Silva, R, Diener, C, Dorrestein, PC, Douglas, GM, Durall, DM, Duvallet, C, Edwardson, CF, Ernst, M, Estaki, M, Fouquier, J, Gauglitz, JM, Gibbons, SM, Gibson, DL, Gonzalez, A, Gorlick, K, Guo, J, Hillmann, B, Holmes, S, Holste, H, Huttenhower, C, Huttley, GA, Janssen, S, Jarmusch, AK, Jiang, L, Kaehler, BD, Kang, KB, Keefe, CR, Keim, P, Kelley, ST, Knights, D (B47) 2019; 37 Loit, K, Adamson, K, Bahram, M, Puusepp, R, Anslan, S, Kiiker, R, Drenkhan, R, Tedersoo, L (B96) 2019; 85 Fuks, G, Elgart, M, Amir, A, Zeisel, A, Turnbaugh, PJ, Soen, Y, Shental, N (B117) 2018; 6 Alcon-Giner, C, Caim, S, Mitra, S, Ketskemety, J, Wegmann, U, Wain, J, Belteki, G, Clarke, P, Hall, LJ (B31) 2017; 18 Prodan, A, Tremaroli, V, Brolin, H, Zwinderman, AH, Nieuwdorp, M, Levin, E (B42) 2020; 15 De Filippis, F, Parente, E, Zotta, T, Ercolini, D (B87) 2018; 265 Bailén, M, Bressa, C, Larrosa, M, González-Soltero, R (B56) 2020; 169 Edgar, RC (B49) 2018; 34 Caporaso, JG, Lauber, CL, Walters, WA, Berg-Lyons, D, Lozupone, CA, Turnbaugh, PJ, Fierer, N, Knight, R (B116) 2011; 108 Methé, BA, Nelson, KE, Pop, M, Creasy, HH, Giglio, MG, Huttenhower, C, Gevers, D, Petrosino, JF, Abubucker, S, Badger, JH, Chinwalla, AT, Earl, AM, FitzGerald, MG, Fulton, RS, Hallsworth-Pepin, K, Lobos, EA, Madupu, R, Magrini, V, Martin, JC, Mitreva, M, Muzny, DM, Sodergren, EJ, Versalovic, J, Wollam, AM, Worley, KC, Wortman, JR, Young, SK, Zeng, Q, Aagaard, KM, Abolude, OO, Allen-Vercoe, E, Alm, EJ, Alvarado, L, Andersen, GL, Anderson, S, Appelbaum, E, Arachchi, HM, Armitage, G, Arze, CA, Ayvaz, T, Baker, CC, Begg, L, Belachew, T, Bhonagiri, V, Bihan, M, Blaser, MJ, Bloom, T, Bonazzi, VR, Brooks, P, Buck, GA, Buhay, CJ (B34) 2012; 486 Yang, B, Wang, Y, Qian, P-Y (B14) 2016; 17 Parada, AE, Needham, DM, Fuhrman, JA (B69) 2016; 18 Caruso, V, Song, X, Asquith, M, Karstens, L (B100) 2019; 4 Karst, SM, Dueholm, MS, McIlroy, SJ, Kirkegaard, RH, Nielsen, PH, Albertsen, M (B95) 2018; 36 D’Amore, R, Ijaz, UZ, Schirmer, M, Kenny, JG, Gregory, R, Darby, AC, Shakya, M, Podar, M, Quince, C, Hall, N (B75) 2016; 17 Yarza, P, Richter, M, Peplies, J, Euzeby, J, Amann, R, Schleifer, K-H, Ludwig, W, Glöckner, FO, Rosselló-Móra, R (B55) 2008; 31 Shah, M (B90) 2014; 2 Thaiss Christoph, A, Zeevi, D, Levy, M, Zilberman-Schapira, G, Suez, J, Tengeler Anouk, C, Abramson, L, Katz Meirav, N, Korem, T, Zmora, N, Kuperman, Y, Biton, I, Gilad, S, Harmelin, A, Shapiro, H, Halpern, Z, Segal, E, Elinav, E (B80) 2014; 159 Gorzelak, MA, Gill, SK, Tasnim, N, Ahmadi-Vand, Z, Jay, M, Gibson, DL (B59) 2015; 10 Liu, Z, Lozupone, C, Hamady, M, Bushman, FD, Knight, R (B18) 2007; 35 Bokulich, NA, Rideout, JR, Mercurio, WG, Shiffer, A, Wolfe, B, Maurice, CF, Dutton, RJ, Turnbaugh, PJ, Knight, R, Caporaso, JG (B58) 2016; 1 Choo, JM, Leong, LE, Rogers, GB (B62) 2015; 5 Bokulich, NA, Kaehler, BD, Rideout, JR, Dillon, M, Bolyen, E, Knight, R, Huttley, GA, Gregory Caporaso, J (B106) 2018; 6 Kai, S, Matsuo, Y, Nakagawa, S, Kryukov, K, Matsukawa, S, Tanaka, H, Iwai, T, Imanishi, T, Hirota, K (B21) 2019; 9 Roller, BRK, Stoddard, SF, Schmidt, TM (B103) 2016; 1 Salter, SJ, Cox, MJ, Turek, EM, Calus, ST, Cookson, WO, Moffatt, MF, Turner, P, Parkhill, J, Loman, NJ, Walker, AW (B115) 2014; 12 F Escapa, I, Huang, Y, Chen, T, Lin, M, Kokaras, A, Dewhirst, FE, Lemon, KP (B94) 2020; 8 Gohl, DM, Vangay, P, Garbe, J, MacLean, A, Hauge, A, Becker, A, Gould, TJ, Clayton, JB, Johnson, TJ, Hunter, R, Knights, D, Beckman, KB (B73) 2016; 34 Sinha, R, Abnet, CC, White, O, Knight, R, Huttenhower, C (B79) 2015; 16 Ghyselinck, J, Pfeiffer, S, Heylen, K, Sessitsch, A, De Vos, P (B36) 2013; 8 Yeh, Y-C, Needham, DM, Sieradzki, ET, Fuhrman, JA (B77) 2018; 3 Ewels, PA, Peltzer, A, Fillinger, S, Patel, H, Alneberg, J, Wilm, A, Garcia, MU, Di Tommaso, P, Nahnsen, S (B112) 2020; 38 Lagkouvardos, I, Fischer, S, Kumar, N, Clavel, T (B114) 2017; 5 Woese, CR, Kandler, O, Wheelis, ML (B8) 1990; 87 Edgar, RC (B110) 2013; 10 Burz, SD, Abraham, AL, Fonseca, F, David, O, Chapron, A, Béguet-Crespel, F, Cénard, S, Le Roux, K, Patrascu, O, Levenez, F, Schwintner, C, Blottière, HM, Béra-Maillet, C, Lepage, P, Doré, J, Juste, C (B61) 2019; 9 B54 Klappenbach, JA, Saxman, PR, Cole, JR, Schmidt, TM (B102) 2001; 29 Jones, MB, Highlander, SK, Anderson, EL, Li, W, Dayrit, M, Klitgord, N, Fabani, MM, Seguritan, V, Green, J, Pride, DT, Yooseph, S, Biggs, W, Nelson, KE, Venter, JC (B74) 2015; 112 B109 Quast, C, Pruesse, E, Yilmaz, P, Gerken, J, Schweer, T, Yarza, P, Peplies, J, Glöckner, FO (B53) 2013; 41 Berry, D, Ben Mahfoudh, K, Wagner, M, Loy, A (B17) 2011; 77 Branton, D, Deamer, DW, Marziali, A, Bayley, H, Benner, SA, Butler, T, Di Ventra, M, Garaj, S, Hibbs, A, Huang, X, Jovanovich, SB, Krstic, PS, Lindsay, S, Ling, XS, Mastrangelo, CH, Meller, A, Oliver, JS, Pershin, YV, Ramsey, JM, Riehn, R, Soni, GV, Tabard-Cossa, V, Wanunu, M, Wiggin, M, Schloss, JA (B19) 2008; 26 Reitmeier, S, Kiessling, S, Clavel, T, List, M, Almeida, EL, Ghosh, TS, Neuhaus, K, Grallert, H, Linseisen, J, Skurk, T, Brandl, B, Breuninger, TA, Troll, M, Rathmann, W, Linkohr, B, Hauner, H, Laudes, M, Franke, A, Le Roy, CI, Bell, JT, Spector, T, Baumbach, J, O’Toole, PW, Peters, A, Haller, D (B1) 2020; 28 Barb, JJ, Oler, AJ, Kim, H-S, Chalmers, N, Wallen, GR, Cashion, A, Munson, PJ, Ames, NJ (B38) 2016; 11 Martínez-Porchas, M, Vargas-Albores, F (B13) 2017; 3 Fouhy, F, Deane, J, Rea, MC, O’Sullivan, O, Ross, RP, O’Callaghan, G, Plant, BJ, Stanton, C (B63) 2015; 10 Thijs, S, Op De Beeck, M, Beckers, B, Truyens, S, Stevens, V, Van Hamme, JD, Weyens, N, Vangronsveld, J (B71) 2017; 8 Tremblay, J, Singh, K, Fern, A, Kirton, ES, He, S, Woyke, T, Lee, J, Chen, F, Dangl, JL, Tringe, SG (B72) 2015; 6 Sinha, R, Abu-Ali, G, Vogtmann, E, Fodor, AA, Ren, B, Amir, A, Schwager, E, Crabtree, J, Ma, S, Abnet, CC, Knight, R, White, O, Huttenhower, C (B67) 2017; 35 Walker, AW, Martin, JC, Scott, P, Parkhill, J, Flint, HJ, Scott, KP (B84) 2015; 3 Baker, GC, Smith, JJ, Cowan, DA (B10) 2003; 55 Hiergeist, A, Reischl, U, Gessner, A (B6) 2016; 306 Caporaso, JG, Kuczynski, J, Stombaugh, J, Bittinger, K, Bushman, FD, Costello, EK, Fierer, N, Peña, AG, Goodrich, JK, Gordon, JI, Huttley, GA, Kelley, ST, Knights, D, Koenig, JE, Ley, RE, Lozupone, CA, McDonald, D, Muegge, BD, Pirrung, M, Reeder, J, Sevinsky, JR, Turnbaugh, PJ, Walters, WA, Widmann, J, Yatsunenko, T, Zaneveld, J, Knight, R (B46) 2010; 7 Kozich, JJ, Westcott, SL, Baxter, NT, Highlander, SK, Schloss, PD (B76) 2013; 79 Escobar-Zepeda, A, Godoy-Lozano, EE, Raggi, L, Segovia, L, Merino, E, Gutiérrez-Rios, RM, Juarez, K, Licea-Navarro, AF, Pardo-Lopez, L, Sanchez-Flores, A (B57) 2018; 8 Costea, PI, Zeller, G, Sunagawa, S, Pelletier, E, Alberti, A, Levenez, F, Tramontano, M, Driessen, M, Hercog, R, Jung, F-E, Kultima, JR, Hayward, MR, Coelho, LP, Allen-Vercoe, E, Bertrand, L, Blaut, M, Brown, JRM, Carton, T, Cools-Portier, S, Daigneault, M, Derrien, M, Druesne, A, de Vos, WM, Finlay, BB, Flint, HJ, Guarner, F, Hattori, M, Heilig, H, Luna, RA, van Hylckama Vlieg, J, Junick, J, Klymiuk, I, Langella, P, Le Chatelier, E, Mai, V, Manichanh, C, Martin, JC, Mery, C, Morita, H, O’Toole, PW, Orvain, C, Patil, KR, Penders, J, Persson, S, Pons, N, Popova, M, Salonen, A, Saulnier, D, Scott, KP, Singh, B, Slezak, K, Veiga, P, Versalovic, J, Zhao, L, Zoetendal, EG, Ehrlich, SD, Dore, J, Bork, P (B68) 2017; 35 Penington, JS, Penno, MAS, Ngui, KM, Ajami, NJ, Roth-Schulze, AJ, Wilcox, SA, Bandala-Sanchez, E, Wentworth, JM, Barry, SC, Brown, CY, Couper, JJ, Petrosino, JF, Papenfuss, AT, Harrison, LC (B83) 2018; 8 B113 B111 Goodrich, JK, Davenport, ER, Beaumont, M, Jackson, MA, Knight, R, Ober, C, Spector, TD, Bell, JT, Clark, AG, Ley, RE (B5) 2016; 19 Yoon, S-H, Ha, S-M, Kwon, S, Lim, J, Kim, Y, Seo, H, Chun, J (B101) 2017; 67 Fredriksson, NJ, Hermansson, M, Wilen, BM (B89) 2013; 8 (B33) 2012; 7 Bukin, YS, Galachyants, YP, Morozov, IV, Bukin, SV, Zakharenko, AS, Zemskaya, TI (B37) 2019; 6 Callahan, BJ, McMurdie, PJ, Rosen, MJ, Han, AW, Johnson, AJA, Holmes, SP (B48) 2016; 13 Hamady, M, Knight, R (B2) 2009; 19 Martijn, J, Lind, AE, Schön, ME, Spiertz, I, Juzokaite, L, Bunikis, I, Pettersson, OV, Ettema, TJG (B25) 2019; 21 Schloss, PD, Westcott, SL, Ryabin, T, Hall, JR, Hartmann, M, Hollister, EB, Lesniewski, RA, Oakley, BB, Parks, DH, Robinson, CJ, Sahl, JW, Stres, B, Thallinger, GG, Van Horn, DJ, Weber, CF (B45) 2009; 75 Reitmeier, S, Kiessling, S, Neuhaus, K, Haller, D (B105) 2020; 1 Godon, JJ, Zumstein, E, Dabert, P, Habouzit, F, Moletta, R (B104) 1997; 63 Nossa, CW, Oberdorf, WE, Yang, L, Aas, JA, Paster, BJ, Desantis, TZ, Brodie, EL, Malamud, D, Poles, MA, Pei, Z (B32) 2010; 16 Bjerre, RD, Hugerth, LW, Boulund, F, Seifert, M, Johansen, JD, Engstrand, L (B85) 2019; 9 Pinna, NK, Dutta, A, Monzoorul Haque, M, Mande, SS (B39) 2019; 10 DeSantis, TZ, Hugenholtz, P, Larsen, N, Rojas, M, Brodie, EL, Keller, K, Huber, T, Dalevi, D, Hu, P, Andersen, GL (B51) 2006; 72 Karstens, L, Asquith, M, Davin, S, Fair, D, Gregory, WT, Wolfe, AJ, Braun, J, McWeeney, S (B78) 2019; 4 Claesson, MJ, O’Sullivan, O, Wang, Q, Nikkila, J, Marchesi, JR, Smidt, H, de Vos, WM, Ross, RP, O’Toole, PW (B35) 2009; 4 Bellali, S, Lagier, JC, Raoult, D, Bou Khalil, J (B81) 2019; 10 Duvallet, C, Gibbons, SM, Gurry, T, Irizarry, RA, Alm, EJ (B4) 2017; 8 Fischer, MA, Güllert, S, Neulinger, SC, Streit, WR, Schmitz, RA (B12) 2016; 7 Rausch, P, Rühlemann, M, Hermes, BM, Doms, S, Dagan, T, Dierking, K, Domin, H, Fraune, S, von Frieling, J, Hentschel, U, Heinsen, F-A, Höppner, M, Jahn, MT, Jaspers, C, Kissoyan, KAB, Langfeldt, D, Rehman, A, Reusch, TBH, Roeder, T, Schmitz, RA, Schulenbur |
| References_xml | – ident: e_1_3_2_112_2 – ident: e_1_3_2_72_2 doi: 10.3389/fmicb.2017.00494 – ident: e_1_3_2_89_2 doi: 10.1128/mSphere.00410-18 – ident: e_1_3_2_34_2 doi: 10.1371/journal.pone.0039315 – ident: e_1_3_2_46_2 doi: 10.1128/AEM.01541-09 – ident: e_1_3_2_44_2 doi: 10.3390/genes11080878 – ident: e_1_3_2_35_2 doi: 10.1038/nature11209 – ident: e_1_3_2_61_2 doi: 10.1158/1055-9965.EPI-15-0951 – ident: e_1_3_2_45_2 doi: 10.1186/s12864-017-3501-4 – ident: e_1_3_2_78_2 doi: 10.1128/mSystems.00023-18 – ident: e_1_3_2_70_2 doi: 10.1111/1462-2920.13023 – ident: e_1_3_2_57_2 doi: 10.1016/j.mimet.2019.105811 – ident: e_1_3_2_9_2 doi: 10.1073/pnas.87.12.4576 – ident: e_1_3_2_28_2 doi: 10.1038/s41467-019-13036-1 – ident: e_1_3_2_83_2 doi: 10.3389/fmicb.2020.00972 – ident: e_1_3_2_7_2 doi: 10.1016/j.ijmm.2016.03.005 – ident: e_1_3_2_17_2 doi: 10.1111/1758-2229.12684 – ident: e_1_3_2_8_2 doi: 10.1371/journal.pone.0094249 – ident: e_1_3_2_11_2 doi: 10.1016/j.mimet.2003.08.009 – ident: e_1_3_2_13_2 doi: 10.3389/fmicb.2016.01297 – ident: e_1_3_2_48_2 doi: 10.1038/s41587-019-0209-9 – ident: e_1_3_2_73_2 doi: 10.3389/fmicb.2015.00771 – ident: e_1_3_2_90_2 doi: 10.1371/journal.pone.0076431 – ident: e_1_3_2_30_2 doi: 10.1038/s41467-019-09637-5 – ident: e_1_3_2_80_2 doi: 10.1186/s13059-015-0841-8 – ident: e_1_3_2_109_2 doi: 10.1093/bioinformatics/btq461 – ident: e_1_3_2_106_2 doi: 10.1016/j.xpro.2020.100148 – ident: e_1_3_2_71_2 doi: 10.1093/nar/gks808 – ident: e_1_3_2_115_2 doi: 10.7717/peerj.2836 – ident: e_1_3_2_88_2 doi: 10.1016/j.ijfoodmicro.2017.10.028 – ident: e_1_3_2_52_2 doi: 10.1128/AEM.03006-05 – ident: e_1_3_2_32_2 doi: 10.1186/s12864-017-4229-x – ident: e_1_3_2_86_2 doi: 10.1038/s41598-019-53599-z – ident: e_1_3_2_82_2 doi: 10.3389/fmicb.2019.01606 – ident: e_1_3_2_56_2 doi: 10.1016/j.syapm.2008.07.001 – ident: e_1_3_2_51_2 doi: 10.1038/ismej.2017.119 – ident: e_1_3_2_76_2 doi: 10.1186/s12864-015-2194-9 – ident: e_1_3_2_75_2 doi: 10.1073/pnas.1519288112 – ident: e_1_3_2_87_2 doi: 10.1016/j.jid.2016.01.016 – ident: e_1_3_2_111_2 doi: 10.1038/nmeth.2604 – ident: e_1_3_2_26_2 doi: 10.1111/1462-2920.14636 – ident: e_1_3_2_92_2 doi: 10.3389/fmicb.2018.02140 – ident: e_1_3_2_24_2 doi: 10.1186/s13742-016-0111-z – ident: e_1_3_2_49_2 doi: 10.1038/nmeth.3869 – ident: e_1_3_2_114_2 – ident: e_1_3_2_74_2 doi: 10.1038/nbt.3601 – ident: e_1_3_2_110_2 doi: 10.14806/ej.17.1.200 – ident: e_1_3_2_15_2 doi: 10.1186/s12859-016-0992-y – ident: e_1_3_2_50_2 doi: 10.1093/bioinformatics/bty113 – ident: e_1_3_2_65_2 doi: 10.1038/s41598-018-34294-x – volume: 2 start-page: 176 year: 2014 ident: e_1_3_2_91_2 article-title: An application of sequencing batch reactors in the identification of microbial community structure from an activated sludge publication-title: J Applied Environ Microbiol – ident: e_1_3_2_53_2 doi: 10.1093/nar/gkt1244 – ident: e_1_3_2_22_2 doi: 10.1002/2211-5463.12590 – ident: e_1_3_2_4_2 doi: 10.1111/j.1365-294X.2012.05538.x – ident: e_1_3_2_31_2 doi: 10.1128/IAI.00493-09 – ident: e_1_3_2_3_2 doi: 10.1101/gr.085464.108 – ident: e_1_3_2_105_2 doi: 10.1128/AEM.63.7.2802-2813.1997 – ident: e_1_3_2_33_2 doi: 10.3748/wjg.v16.i33.4135 – ident: e_1_3_2_94_2 doi: 10.1128/mBio.01557-20 – ident: e_1_3_2_16_2 doi: 10.3389/fmicb.2019.02796 – ident: e_1_3_2_81_2 doi: 10.1016/j.cell.2014.09.048 – ident: e_1_3_2_42_2 doi: 10.3389/fmicb.2020.01262 – ident: e_1_3_2_77_2 doi: 10.1128/AEM.01043-13 – ident: e_1_3_2_96_2 doi: 10.1038/nbt.4045 – ident: e_1_3_2_43_2 doi: 10.1371/journal.pone.0227434 – ident: e_1_3_2_5_2 doi: 10.1038/s41467-017-01973-8 – ident: e_1_3_2_101_2 doi: 10.1128/mSystems.00163-18 – ident: e_1_3_2_39_2 doi: 10.1371/journal.pone.0148047 – ident: e_1_3_2_93_2 doi: 10.1186/s40168-019-0743-1 – ident: e_1_3_2_100_2 doi: 10.1101/081257 – ident: e_1_3_2_18_2 doi: 10.1128/AEM.05220-11 – ident: e_1_3_2_107_2 doi: 10.1186/s40168-018-0470-z – ident: e_1_3_2_60_2 doi: 10.1371/journal.pone.0134802 – ident: e_1_3_2_20_2 doi: 10.1038/nbt.1495 – ident: e_1_3_2_97_2 doi: 10.1128/AEM.01368-19 – ident: e_1_3_2_40_2 doi: 10.3389/fgene.2019.00653 – ident: e_1_3_2_19_2 doi: 10.1093/nar/gkm541 – ident: e_1_3_2_117_2 doi: 10.1073/pnas.1000080107 – ident: e_1_3_2_54_2 doi: 10.1093/nar/gks1219 – ident: e_1_3_2_63_2 doi: 10.1038/srep16350 – ident: e_1_3_2_99_2 doi: 10.5808/GI.2018.16.4.e24 – ident: e_1_3_2_55_2 – ident: e_1_3_2_64_2 doi: 10.1371/journal.pone.0119355 – ident: e_1_3_2_119_2 doi: 10.1016/j.anaerobe.2014.04.006 – ident: e_1_3_2_37_2 doi: 10.1371/journal.pone.0071360 – ident: e_1_3_2_10_2 doi: 10.1128/JCM.01228-07 – ident: e_1_3_2_29_2 doi: 10.1016/j.gpb.2015.08.002 – ident: e_1_3_2_69_2 doi: 10.1038/nbt.3960 – ident: e_1_3_2_62_2 doi: 10.1038/s41598-019-45173-4 – ident: e_1_3_2_118_2 doi: 10.1186/s40168-017-0396-x – ident: e_1_3_2_103_2 doi: 10.1093/nar/29.1.181 – ident: e_1_3_2_102_2 doi: 10.1099/ijsem.0.001755 – ident: e_1_3_2_116_2 doi: 10.1186/s12915-014-0087-z – ident: e_1_3_2_67_2 doi: 10.1111/jam.14608 – ident: e_1_3_2_41_2 doi: 10.4172/jpb.1000381 – ident: e_1_3_2_2_2 doi: 10.1016/j.chom.2020.06.004 – ident: e_1_3_2_85_2 doi: 10.1186/s40168-015-0087-4 – ident: e_1_3_2_120_2 doi: 10.1111/j.1550-7408.1999.tb04612.x – ident: e_1_3_2_59_2 doi: 10.1128/mSystems.00062-16 – ident: e_1_3_2_66_2 doi: 10.1128/mSystems.00547-19 – ident: e_1_3_2_21_2 doi: 10.1126/science.1162986 – ident: e_1_3_2_84_2 doi: 10.1038/s41598-018-22491-7 – ident: e_1_3_2_108_2 doi: 10.1128/AEM.00062-07 – ident: e_1_3_2_14_2 doi: 10.1016/j.heliyon.2017.e00370 – ident: e_1_3_2_68_2 doi: 10.1038/nbt.3981 – ident: e_1_3_2_98_2 doi: 10.1093/gigascience/giy054 – ident: e_1_3_2_95_2 doi: 10.1186/s40168-020-00841-w – ident: e_1_3_2_12_2 doi: 10.7717/peerj.3036 – ident: e_1_3_2_27_2 doi: 10.1093/nar/gkz569 – ident: e_1_3_2_25_2 doi: 10.12688/f1000research.16817.2 – ident: e_1_3_2_23_2 doi: 10.1016/j.rsma.2018.100485 – ident: e_1_3_2_104_2 doi: 10.1038/nmicrobiol.2016.160 – ident: e_1_3_2_79_2 doi: 10.1128/mSystems.00290-19 – ident: e_1_3_2_58_2 doi: 10.1038/s41598-018-30515-5 – ident: e_1_3_2_113_2 doi: 10.1038/s41587-020-0439-x – ident: e_1_3_2_6_2 doi: 10.1016/j.chom.2016.04.017 – ident: e_1_3_2_36_2 doi: 10.1371/journal.pone.0006669 – ident: e_1_3_2_47_2 doi: 10.1038/nmeth.f.303 – ident: e_1_3_2_38_2 doi: 10.1038/sdata.2019.7 – volume: 10 start-page: 2796 year: 2019 ident: B15 article-title: Exploring the archaeome: detection of archaeal signatures in the human body publication-title: Front Microbiol doi: 10.3389/fmicb.2019.02796 – volume: 3 start-page: 26 year: 2015 ident: B84 article-title: 16S rRNA gene-based profiling of the human infant gut microbiota is strongly influenced by sample processing and PCR primer choice publication-title: Microbiome doi: 10.1186/s40168-015-0087-4 – volume: 8 start-page: 4386 year: 2018 ident: B83 article-title: Influence of fecal collection conditions and 16S rRNA gene sequencing at two centers on human gut microbiota analysis publication-title: Sci Rep doi: 10.1038/s41598-018-22491-7 – volume: 41 start-page: D590 year: 2013 end-page: D596 ident: B53 article-title: The SILVA ribosomal RNA gene database project: improved data processing and web-based tools publication-title: Nucleic Acids Res doi: 10.1093/nar/gks1219 – volume: 3 year: 2018 ident: B77 article-title: Taxon disappearance from microbiome analysis reinforces the value of mock communities as a standard in every sequencing run publication-title: mSystems doi: 10.1128/mSystems.00023-18 – volume: 55 start-page: 541 year: 2003 end-page: 555 ident: B10 article-title: Review and re-analysis of domain-specific 16S primers publication-title: J Microbiol Methods doi: 10.1016/j.mimet.2003.08.009 – volume: 5 start-page: 16350 year: 2015 ident: B62 article-title: Sample storage conditions significantly influence faecal microbiome profiles publication-title: Sci Rep doi: 10.1038/srep16350 – volume: 6 start-page: 190007 year: 2019 ident: B37 article-title: The effect of 16S rRNA region choice on bacterial community metabarcoding results publication-title: Sci Data doi: 10.1038/sdata.2019.7 – volume: 10 start-page: 5029 year: 2019 ident: B27 article-title: Evaluation of 16S rRNA gene sequencing for species and strain-level microbiome analysis publication-title: Nat Commun doi: 10.1038/s41467-019-13036-1 – volume: 46 start-page: 327 year: 1999 end-page: 338 ident: B119 article-title: Investigating deep phylogenetic relationships among cyanobacteria and plastids by small subunit rRNA sequence analysis publication-title: J Eukaryot Microbiol doi: 10.1111/j.1550-7408.1999.tb04612.x – volume: 26 start-page: 1146 year: 2008 end-page: 1153 ident: B19 article-title: The potential and challenges of nanopore sequencing publication-title: Nat Biotechnol doi: 10.1038/nbt.1495 – volume: 34 start-page: 942 year: 2016 end-page: 949 ident: B73 article-title: Systematic improvement of amplicon marker gene methods for increased accuracy in microbiome studies publication-title: Nat Biotechnol doi: 10.1038/nbt.3601 – volume: 1 start-page: 100148 year: 2020 ident: B105 article-title: Comparing circadian rhythmicity in the human gut microbiome publication-title: STAR Protoc doi: 10.1016/j.xpro.2020.100148 – volume: 18 start-page: 1403 year: 2016 end-page: 1414 ident: B69 article-title: Every base matters: assessing small subunit rRNA primers for marine microbiomes with mock communities, time series and global field samples publication-title: Environ Microbiol doi: 10.1111/1462-2920.13023 – volume: 11 start-page: 1262 year: 2020 ident: B41 article-title: Comparison of bioinformatics pipelines and operating systems for the analyses of 16S rRNA gene amplicon sequences in human fecal samples publication-title: Front Microbiol doi: 10.3389/fmicb.2020.01262 – ident: B111 article-title: Peltzer A , Straub D , Patel H . 2019 . nf-core/ampliseq: Ampliseq version 1.1.2 . https://doi.org/10.5281/zenodo.3585924 . – volume: 18 start-page: 841 year: 2017 ident: B31 article-title: Optimisation of 16S rRNA gut microbiota profiling of extremely low birth weight infants publication-title: BMC Genomics doi: 10.1186/s12864-017-4229-x – volume: 35 year: 2007 ident: B18 article-title: Short pyrosequencing reads suffice for accurate microbial community analysis publication-title: Nucleic Acids Res doi: 10.1093/nar/gkm541 – volume: 1 start-page: 16160 year: 2016 ident: B103 article-title: Exploiting rRNA operon copy number to investigate bacterial reproductive strategies publication-title: Nat Microbiol doi: 10.1038/nmicrobiol.2016.160 – volume: 5 year: 2017 ident: B114 article-title: Rhea: a transparent and modular R pipeline for microbial profiling based on 16S rRNA gene amplicons publication-title: PeerJ doi: 10.7717/peerj.2836 – volume: 11 start-page: 972 year: 2020 ident: B82 article-title: Variations of gut microbiome profile under different storage conditions and preservation periods: a multi-dimensional evaluation publication-title: Front Microbiol doi: 10.3389/fmicb.2020.00972 – volume: 31 start-page: 241 year: 2008 end-page: 250 ident: B55 article-title: The All-Species Living Tree project: a 16S rRNA-based phylogenetic tree of all sequenced type strains publication-title: Syst Appl Microbiol doi: 10.1016/j.syapm.2008.07.001 – volume: 45 start-page: 2761 year: 2007 end-page: 2764 ident: B9 article-title: 16S rRNA gene sequencing for bacterial identification in the diagnostic laboratory: pluses, perils, and pitfalls publication-title: J Clin Microbiol doi: 10.1128/JCM.01228-07 – volume: 10 start-page: 996 year: 2013 end-page: 998 ident: B110 article-title: UPARSE: highly accurate OTU sequences from microbial amplicon reads publication-title: Nat Methods doi: 10.1038/nmeth.2604 – volume: 72 start-page: 5069 year: 2006 end-page: 5072 ident: B51 article-title: Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB publication-title: Appl Environ Microbiol doi: 10.1128/AEM.03006-05 – volume: 8 start-page: 494 year: 2017 ident: B71 article-title: Comparative evaluation of four bacteria-specific primer pairs for 16S rRNA gene surveys publication-title: Front Microbiol doi: 10.3389/fmicb.2017.00494 – volume: 29 start-page: 181 year: 2001 end-page: 184 ident: B102 article-title: rrndb: the Ribosomal RNA Operon Copy Number Database publication-title: Nucleic Acids Res doi: 10.1093/nar/29.1.181 – ident: B54 article-title: Laboratory for Integrated Bioinformatics, Center for Integrative Medical Sciences . 2015 . GRD—Genomic-based 16S ribosomal RNA database, Riken (Japan) . https://metasystems.riken.jp/grd/ . – volume: 16 start-page: 4135 year: 2010 end-page: 4144 ident: B32 article-title: Design of 16S rRNA gene primers for 454 pyrosequencing of the human foregut microbiome publication-title: World J Gastroenterol doi: 10.3748/wjg.v16.i33.4135 – volume: 108 start-page: 4516 year: 2011 end-page: 4522 ident: B116 article-title: Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.1000080107 – volume: 25 start-page: 407 year: 2016 end-page: 416 ident: B60 article-title: Collecting fecal samples for microbiome analyses in epidemiology studies publication-title: Cancer Epidemiol Biomarkers Prev doi: 10.1158/1055-9965.EPI-15-0951 – volume: 486 start-page: 215 year: 2012 end-page: 221 ident: B34 article-title: A framework for human microbiome research publication-title: Nature – volume: 17 start-page: 135 year: 2016 ident: B14 article-title: Sensitivity and correlation of hypervariable regions in 16S rRNA genes in phylogenetic analysis publication-title: BMC Bioinformatics doi: 10.1186/s12859-016-0992-y – volume: 16 year: 2018 ident: B98 article-title: Evaluation of 16S rRNA databases for taxonomic assignments using mock community publication-title: Genomics Inform doi: 10.5808/GI.2018.16.4.e24 – volume: 11 year: 2020 ident: B93 article-title: Generation of comprehensive ecosystem-specific reference databases with species-level resolution by high-throughput full-length 16S rRNA gene sequencing and automated taxonomy assignment (AutoTax) publication-title: mBio doi: 10.1128/mBio.01557-20 – volume: 85 year: 2019 ident: B96 article-title: Relative performance of MinION (Oxford Nanopore Technologies) versus Sequel (Pacific Biosciences) third-generation sequencing instruments in identification of agricultural and forest fungal pathogens publication-title: Appl Environ Microbiol doi: 10.1128/AEM.01368-19 – volume: 79 start-page: 5112 year: 2013 end-page: 5120 ident: B76 article-title: Development of a dual-index sequencing strategy and curation pipeline for analyzing amplicon sequence data on the MiSeq Illumina sequencing platform publication-title: Appl Environ Microbiol doi: 10.1128/AEM.01043-13 – volume: 8 start-page: 65 year: 2020 ident: B94 article-title: Construction of habitat-specific training sets to achieve species-level assignment in 16S rRNA gene datasets publication-title: Microbiome doi: 10.1186/s40168-020-00841-w – volume: 6 start-page: 771 year: 2015 ident: B72 article-title: Primer and platform effects on 16S rRNA tag sequencing publication-title: Front Microbiol doi: 10.3389/fmicb.2015.00771 – volume: 6 start-page: 17 year: 2018 ident: B117 article-title: Combining 16S rRNA gene variable regions enables high-resolution microbial community profiling publication-title: Microbiome doi: 10.1186/s40168-017-0396-x – volume: 19 start-page: 731 year: 2016 end-page: 743 ident: B5 article-title: Genetic determinants of the gut microbiome in UK twins publication-title: Cell Host Microbe doi: 10.1016/j.chom.2016.04.017 – volume: 21 start-page: 1794 year: 2012 end-page: 1805 ident: B3 article-title: Next-generation sequencing technologies for environmental DNA research publication-title: Mol Ecol doi: 10.1111/j.1365-294X.2012.05538.x – volume: 63 start-page: 2802 year: 1997 end-page: 2813 ident: B104 article-title: Molecular microbial diversity of an anaerobic digestor as determined by small-subunit rDNA sequence analysis publication-title: Appl Environ Microbiol doi: 10.1128/AEM.63.7.2802-2813.1997 – volume: 10 start-page: 653 year: 2019 ident: B39 article-title: Can targeting non-contiguous V-regions with paired-end sequencing improve 16S rRNA-based taxonomic resolution of microbiomes?: an in silico evaluation publication-title: Front Genet doi: 10.3389/fgene.2019.00653 – volume: 18 start-page: 114 year: 2017 ident: B44 article-title: SILVA, RDP, Greengenes, NCBI and OTT—how do these taxonomies compare? publication-title: BMC Genomics doi: 10.1186/s12864-017-3501-4 – volume: 11 year: 2016 ident: B38 article-title: Development of an analysis pipeline characterizing multiple hypervariable regions of 16S rRNA using mock samples publication-title: PLoS One doi: 10.1371/journal.pone.0148047 – volume: 169 start-page: 105811 year: 2020 ident: B56 article-title: Bioinformatic strategies to address limitations of 16rRNA short-read amplicons from different sequencing platforms publication-title: J Microbiol Methods doi: 10.1016/j.mimet.2019.105811 – volume: 77 start-page: 7846 year: 2011 end-page: 7849 ident: B17 article-title: Barcoded primers used in multiplex amplicon pyrosequencing bias amplification publication-title: Appl Environ Microbiol doi: 10.1128/AEM.05220-11 – volume: 29 start-page: 10 year: 2014 end-page: 21 ident: B118 article-title: Towards molecular biomarkers for biogas production from lignocellulose-rich substrates publication-title: Anaerobe doi: 10.1016/j.anaerobe.2014.04.006 – volume: 7 start-page: giy054 year: 2018 ident: B97 article-title: Benchmarking taxonomic assignments based on 16S rRNA gene profiling of the microbiota from commonly sampled environments publication-title: Gigascience doi: 10.1093/gigascience/giy054 – volume: 16 start-page: 276 year: 2015 ident: B79 article-title: The microbiome quality control project: baseline study design and future directions publication-title: Genome Biol doi: 10.1186/s13059-015-0841-8 – volume: 9 start-page: 548 year: 2019 end-page: 557 ident: B21 article-title: Rapid bacterial identification by direct PCR amplification of 16S rRNA genes using the MinION nanopore sequencer publication-title: FEBS Open Bio doi: 10.1002/2211-5463.12590 – volume: 2 start-page: 176 year: 2014 end-page: 184 ident: B90 article-title: An application of sequencing batch reactors in the identification of microbial community structure from an activated sludge publication-title: J Applied Environ Microbiol – volume: 8 start-page: 12034 year: 2018 ident: B57 article-title: Analysis of sequencing strategies and tools for taxonomic annotation: defining standards for progressive metagenomics publication-title: Sci Rep doi: 10.1038/s41598-018-30515-5 – volume: 8 start-page: 12 year: 2015 ident: B40 article-title: A comparison of three bioinformatics pipelines for the analysis of preterm gut microbiota using 16S rRNA gene sequencing data publication-title: J Proteomics Bioinform doi: 10.4172/jpb.1000381 – volume: 15 year: 2020 ident: B42 article-title: Comparing bioinformatic pipelines for microbial 16S rRNA amplicon sequencing publication-title: PLoS One doi: 10.1371/journal.pone.0227434 – volume: 9 year: 2014 ident: B7 article-title: Analysis, optimization and verification of Illumina-generated 16S rRNA gene amplicon surveys publication-title: PLoS One doi: 10.1371/journal.pone.0094249 – volume: 7 start-page: 133 year: 2019 ident: B92 article-title: Comparative analysis of amplicon and metagenomic sequencing methods reveals key features in the evolution of animal metaorganisms publication-title: Microbiome doi: 10.1186/s40168-019-0743-1 – volume: 35 start-page: 1069 year: 2017 end-page: 1076 ident: B68 article-title: Towards standards for human fecal sample processing in metagenomic studies publication-title: Nat Biotechnol doi: 10.1038/nbt.3960 – volume: 28 start-page: 258 year: 2020 end-page: 272.e6 ident: B1 article-title: Arrhythmic gut microbiome signatures predict risk of type 2 diabetes publication-title: Cell Host Microbe doi: 10.1016/j.chom.2020.06.004 – volume: 47 year: 2019 ident: B26 article-title: High-throughput amplicon sequencing of the full-length 16S rRNA gene with single-nucleotide resolution publication-title: Nucleic Acids Res doi: 10.1093/nar/gkz569 – volume: 13 start-page: 278 year: 2015 end-page: 289 ident: B28 article-title: PacBio sequencing and its applications publication-title: Genomics Proteomics Bioinformatics doi: 10.1016/j.gpb.2015.08.002 – volume: 9 start-page: 17287 year: 2019 ident: B85 article-title: Effects of sampling strategy and DNA extraction on human skin microbiome investigations publication-title: Sci Rep doi: 10.1038/s41598-019-53599-z – volume: 10 start-page: 1606 year: 2019 ident: B81 article-title: Among live and dead bacteria, the optimization of sample collection and processing remains essential in recovering gut microbiota components publication-title: Front Microbiol doi: 10.3389/fmicb.2019.01606 – volume: 8 year: 2013 ident: B36 article-title: The effect of primer choice and short read sequences on the outcome of 16S rRNA gene based diversity studies publication-title: PLoS One doi: 10.1371/journal.pone.0071360 – volume: 5 start-page: 4 year: 2016 ident: B23 article-title: Species-level resolution of 16S rRNA gene amplicons sequenced through the MinION™ portable nanopore sequencer publication-title: Gigascience doi: 10.1186/s13742-016-0111-z – volume: 6 start-page: 90 year: 2018 ident: B106 article-title: Optimizing taxonomic classification of marker-gene amplicon sequences with QIIME 2’s q2-feature-classifier plugin publication-title: Microbiome doi: 10.1186/s40168-018-0470-z – volume: 4 year: 2019 ident: B78 article-title: Controlling for contaminants in low-biomass 16S rRNA gene sequencing experiments publication-title: mSystems doi: 10.1128/mSystems.00290-19 – volume: 42 start-page: D633 year: 2014 end-page: D642 ident: B52 article-title: Ribosomal Database Project: data and tools for high throughput rRNA analysis publication-title: Nucleic Acids Res doi: 10.1093/nar/gkt1244 – volume: 112 start-page: 14024 year: 2015 end-page: 14029 ident: B74 article-title: Library preparation methodology can influence genomic and functional predictions in human microbiome research publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.1519288112 – volume: 306 start-page: 334 year: 2016 end-page: 342 ident: B6 article-title: Multicenter quality assessment of 16S ribosomal DNA-sequencing for microbiome analyses reveals high inter-center variability publication-title: Int J Med Microbiol doi: 10.1016/j.ijmm.2016.03.005 – volume: 87 start-page: 4576 year: 1990 end-page: 4579 ident: B8 article-title: Towards a natural system of organisms: proposal for the domains Archaea, Bacteria, and Eucarya publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.87.12.4576 – volume: 323 start-page: 133 year: 2009 end-page: 138 ident: B20 article-title: Real-time DNA sequencing from single polymerase molecules publication-title: Science doi: 10.1126/science.1162986 – volume: 265 start-page: 9 year: 2018 end-page: 17 ident: B87 article-title: A comparison of bioinformatic approaches for 16S rRNA gene profiling of food bacterial microbiota publication-title: Int J Food Microbiol doi: 10.1016/j.ijfoodmicro.2017.10.028 – volume: 38 start-page: 276 year: 2020 end-page: 278 ident: B112 article-title: The nf-core framework for community-curated bioinformatics pipelines publication-title: Nat Biotechnol doi: 10.1038/s41587-020-0439-x – volume: 8 start-page: 16321 year: 2018 ident: B64 article-title: Impact of DNA extraction method and targeted 16S-rRNA hypervariable region on oral microbiota profiling publication-title: Sci Rep doi: 10.1038/s41598-018-34294-x – volume: 3 year: 2018 ident: B88 article-title: Impact of DNA sequencing and analysis methods on 16S rRNA gene bacterial community analysis of dairy products publication-title: mSphere doi: 10.1128/mSphere.00410-18 – volume: 77 start-page: 4668 year: 2009 end-page: 4678 ident: B30 article-title: Community-wide response of the gut microbiota to enteropathogenic Citrobacter rodentium infection revealed by deep sequencing publication-title: Infect Immun doi: 10.1128/IAI.00493-09 – ident: B99 article-title: Edgar RC . 2016 . UNOISE2: improved error-correction for Illumina 16S and ITS amplicon sequencing . bioRxiv doi: 10.1101/081257:081257 . – volume: 5 year: 2020 ident: B65 article-title: Toward standards in clinical microbiota studies: comparison of three DNA extraction methods and two bioinformatic pipelines publication-title: mSystems doi: 10.1128/mSystems.00547-19 – volume: 67 start-page: 1613 year: 2017 end-page: 1617 ident: B101 article-title: Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies publication-title: Int J Syst Evol Microbiol doi: 10.1099/ijsem.0.001755 – volume: 11 start-page: 878 year: 2020 ident: B43 article-title: The influences of bioinformatics tools and reference databases in analyzing the human oral microbial community publication-title: Genes doi: 10.3390/genes11080878 – volume: 4 year: 2019 ident: B100 article-title: Performance of microbiome sequence inference methods in environments with varying biomass publication-title: mSystems doi: 10.1128/mSystems.00163-18 – volume: 25 start-page: 100485 year: 2019 ident: B22 article-title: Rapid profiling of tropical marine cyanobacterial communities publication-title: Reg Stud Mar Sci doi: 10.1016/j.rsma.2018.100485 – volume: 129 start-page: 378 year: 2020 end-page: 388 ident: B66 article-title: Comparison of five assays for DNA extraction from bacterial cells in human faecal samples publication-title: J Appl Microbiol doi: 10.1111/jam.14608 – volume: 10 year: 2015 ident: B63 article-title: The effects of freezing on faecal microbiota as determined using MiSeq sequencing and culture-based investigations publication-title: PLoS One doi: 10.1371/journal.pone.0119355 – volume: 17 start-page: 55 year: 2016 ident: B75 article-title: A comprehensive benchmarking study of protocols and sequencing platforms for 16S rRNA community profiling publication-title: BMC Genomics doi: 10.1186/s12864-015-2194-9 – volume: 3 year: 2017 ident: B13 article-title: An efficient strategy using k-mers to analyse 16S rRNA sequences publication-title: Heliyon doi: 10.1016/j.heliyon.2017.e00370 – volume: 9 start-page: 2140 year: 2018 ident: B91 article-title: Investigation of detection limits and the influence of DNA extraction and primer choice on the observed microbial communities in drinking water samples using 16S rRNA gene amplicon sequencing publication-title: Front Microbiol doi: 10.3389/fmicb.2018.02140 – volume: 36 start-page: 190 year: 2018 end-page: 195 ident: B95 article-title: Retrieval of a million high-quality, full-length microbial 16S and 18S rRNA gene sequences without primer bias publication-title: Nat Biotechnol doi: 10.1038/nbt.4045 – volume: 136 start-page: 947 year: 2016 end-page: 956 ident: B86 article-title: Skin microbiome surveys are strongly influenced by experimental design publication-title: J Invest Dermatol doi: 10.1016/j.jid.2016.01.016 – volume: 13 start-page: 581 year: 2016 end-page: 583 ident: B48 article-title: DADA2: high-resolution sample inference from Illumina amplicon data publication-title: Nat Methods doi: 10.1038/nmeth.3869 – volume: 34 start-page: 2371 year: 2018 end-page: 2375 ident: B49 article-title: Updating the 97% identity threshold for 16S ribosomal RNA OTUs publication-title: Bioinformatics doi: 10.1093/bioinformatics/bty113 – volume: 8 year: 2013 ident: B89 article-title: The choice of PCR primers has great impact on assessments of bacterial community diversity and dynamics in a wastewater treatment plant publication-title: PLoS One doi: 10.1371/journal.pone.0076431 – volume: 7 year: 2012 ident: B33 article-title: Evaluation of 16S rDNA-Based Community Profiling for Human Microbiome Research publication-title: PLoS One doi: 10.1371/journal.pone.0039315 – volume: 1 year: 2016 ident: B58 article-title: mockrobiota: a public resource for microbiome bioinformatics benchmarking publication-title: mSystems doi: 10.1128/mSystems.00062-16 – volume: 21 start-page: 2485 year: 2019 end-page: 2498 ident: B25 article-title: Confident phylogenetic identification of uncultured prokaryotes through long read amplicon sequencing of the 16S-ITS-23S rRNA operon publication-title: Environ Microbiol doi: 10.1111/1462-2920.14636 – volume: 7 start-page: 335 year: 2010 end-page: 336 ident: B46 article-title: QIIME allows analysis of high-throughput community sequencing data publication-title: Nat Methods doi: 10.1038/nmeth.f.303 – volume: 19 start-page: 1141 year: 2009 end-page: 1152 ident: B2 article-title: Microbial community profiling for human microbiome projects: tools, techniques, and challenges publication-title: Genome Res doi: 10.1101/gr.085464.108 – volume: 10 start-page: 1869 year: 2019 ident: B29 article-title: Sequencing of human genomes with nanopore technology publication-title: Nat Commun doi: 10.1038/s41467-019-09637-5 – volume: 159 start-page: 514 year: 2014 end-page: 529 ident: B80 article-title: Transkingdom control of microbiota diurnal oscillations promotes metabolic homeostasis publication-title: Cell doi: 10.1016/j.cell.2014.09.048 – volume: 12 start-page: 87 year: 2014 ident: B115 article-title: Reagent and laboratory contamination can critically impact sequence-based microbiome analyses publication-title: BMC Biol doi: 10.1186/s12915-014-0087-z – volume: 10 year: 2015 ident: B59 article-title: Methods for improving human gut microbiome data by reducing variability through sample processing and storage of stool publication-title: PLoS One doi: 10.1371/journal.pone.0134802 – volume: 4 year: 2009 ident: B35 article-title: Comparative analysis of pyrosequencing and a phylogenetic microarray for exploring microbial community structures in the human distal intestine publication-title: PLoS One doi: 10.1371/journal.pone.0006669 – ident: B109 article-title: Martin M . 2011 . Cutadapt removes adapter sequences from high-throughput sequencing reads . EMBnet J 17 : 10 – 12 . – volume: 11 start-page: 487 year: 2018 end-page: 494 ident: B16 article-title: Newly designed 16S rRNA metabarcoding primers amplify diverse and novel archaeal taxa from the environment publication-title: Environ Microbiol Rep doi: 10.1111/1758-2229.12684 – volume: 37 start-page: 852 year: 2019 end-page: 857 ident: B47 article-title: Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2 publication-title: Nat Biotechnol doi: 10.1038/s41587-019-0209-9 – ident: B113 article-title: Andrews S . 2010 . FastQC: a quality control tool for high throughput sequence data . http://www.bioinformatics.babraham.ac.uk/projects/fastqc/ . – volume: 75 start-page: 7537 year: 2009 end-page: 7541 ident: B45 article-title: Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities publication-title: Appl Environ Microbiol doi: 10.1128/AEM.01541-09 – volume: 7 start-page: 1755 year: 2019 ident: B24 article-title: Microbiota profiling with long amplicons using Nanopore sequencing: full-length 16S rRNA gene and the 16S-ITS-23S of the rrn operon [version 2; peer review: 2 approved, 3 approved with reservations] publication-title: F1000Res doi: 10.12688/f1000research.16817.2 – volume: 26 start-page: 2460 year: 2010 end-page: 2461 ident: B108 article-title: Search and clustering orders of magnitude faster than BLAST publication-title: Bioinformatics doi: 10.1093/bioinformatics/btq461 – volume: 11 start-page: 2639 year: 2017 end-page: 2643 ident: B50 article-title: Exact sequence variants should replace operational taxonomic units in marker-gene data analysis publication-title: ISME J doi: 10.1038/ismej.2017.119 – volume: 7 start-page: 1297 year: 2016 ident: B12 article-title: Evaluation of 16S rRNA gene primer pairs for monitoring microbial community structures showed high reproducibility within and low comparability between datasets generated with multiple archaeal and bacterial primer pairs publication-title: Front Microbiol doi: 10.3389/fmicb.2016.01297 – volume: 41 year: 2013 ident: B70 article-title: Evaluation of general 16S ribosomal RNA gene PCR primers for classical and next-generation sequencing-based diversity studies publication-title: Nucleic Acids Res doi: 10.1093/nar/gks808 – volume: 35 start-page: 1077 year: 2017 end-page: 1086 ident: B67 article-title: Assessment of variation in microbial community amplicon sequencing by the Microbiome Quality Control (MBQC) project consortium publication-title: Nat Biotechnol doi: 10.1038/nbt.3981 – volume: 8 start-page: 1784 year: 2017 ident: B4 article-title: Meta-analysis of gut microbiome studies identifies disease-specific and shared responses publication-title: Nat Commun doi: 10.1038/s41467-017-01973-8 – volume: 73 start-page: 5261 year: 2007 end-page: 5267 ident: B107 article-title: Naïve Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy publication-title: Appl Environ Microbiol doi: 10.1128/AEM.00062-07 – volume: 9 start-page: 8897 year: 2019 ident: B61 article-title: A guide for ex vivo handling and storage of stool samples intended for fecal microbiota transplantation publication-title: Sci Rep doi: 10.1038/s41598-019-45173-4 – volume: 5 year: 2017 ident: B11 article-title: How conserved are the conserved 16S-rRNA regions? publication-title: PeerJ doi: 10.7717/peerj.3036 |
| SSID | ssj0001626676 |
| Score | 2.6049814 |
| Snippet | In 16S rRNA gene sequencing, certain bacterial genera were found to be underrepresented or even missing in taxonomic profiles when using unsuitable primer... Short-amplicon 16S rRNA gene sequencing is currently the method of choice for studies investigating microbiomes. However, comparative studies on differences in... |
| SourceID | doaj pubmedcentral proquest asm2 pubmed crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
| SubjectTerms | Research Article |
| Title | Primer, Pipelines, Parameters: Issues in 16S rRNA Gene Sequencing |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/33627512 https://journals.asm.org/doi/10.1128/mSphere.01202-20 https://www.proquest.com/docview/2493457154 https://pubmed.ncbi.nlm.nih.gov/PMC8544895 https://doaj.org/article/9804953a3e334634aea3387124328974 |
| Volume | 6 |
| WOSCitedRecordID | wos000647699800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2379-5042 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001626676 issn: 2379-5042 databaseCode: DOA dateStart: 20160101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources (ISSN International Center) customDbUrl: eissn: 2379-5042 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001626676 issn: 2379-5042 databaseCode: M~E dateStart: 20160101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Biological Science Database (ProQuest) customDbUrl: eissn: 2379-5042 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001626676 issn: 2379-5042 databaseCode: M7P dateStart: 20150101 isFulltext: true titleUrlDefault: http://search.proquest.com/biologicalscijournals providerName: ProQuest – providerCode: PRVPQU databaseName: Health & Medical Collection (ProQuest) customDbUrl: eissn: 2379-5042 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001626676 issn: 2379-5042 databaseCode: 7X7 dateStart: 20150101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 2379-5042 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001626676 issn: 2379-5042 databaseCode: BENPR dateStart: 20150101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 2379-5042 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001626676 issn: 2379-5042 databaseCode: PIMPY dateStart: 20150101 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3di9QwEB90VbgX8dv6sUQQQbBumqRN6tue3KEPLuVWYX0K2TTFBa93bPcO_O-dSXvLrsj54kspadIOkwkz0_zyG4DXtQmuDI1P61CoVInQpA6zn7TOeMNrjyFDWcdiE3o2M4tFWe2U-iJMWE8P3CtuUhpOEEgng5SqkMoFh1mVRrckMVfQkQkUo56dZCr-XcE4vdDbfUlhJqdzOqYf3tNhUZFSee-R607FnjuKrP1_CzX_REzuuKDje3B3iB3ZtJf5PtwI7QO401eT_PUQphVR9a_fsWp1TqfMQ4e3jsBXxKD5gfWF9tiqZVkxZ-uT2ZQR6TSb92hq9GGP4Nvx0dePn9KhQkLqMAzbpH4ZciOzJcqlnJZBGFc2y6z2RmSe594E1eTG57VblqYujCsazUVJey1c6WDkYxi1Z214Cox74olRBFoTquD4OsGbvJZEMGdwSAJvSF92MPHOxuxBGDso1kbFWsETmFxp1PqBZ5zKXfy8ZsTb7YjznmPjmr6HNEnbfsSOHRvQZuxgM_ZfNpPAq6sptriaaIvEteHsorOYjEqVa4wrE3jST_n2U1ISo3MmEtB7xrAny_6TdvUjMnajYpUp82f_Q_jncCAIV0NWrF7AaLO-CC_htr_crLr1GG7qhY5XM4Zbh0ez6mQcl8aYUK0VtlWfv1TffwNiQAz2 |
| linkProvider | Directory of Open Access Journals |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Primer%2C+Pipelines%2C+Parameters%3A+Issues+in+16S+rRNA+Gene+Sequencing&rft.jtitle=mSphere&rft.au=Abellan-Schneyder%2C+Isabel&rft.au=Matchado%2C+Monica+S&rft.au=Reitmeier%2C+Sandra&rft.au=Sommer%2C+Alina&rft.date=2021-02-24&rft.eissn=2379-5042&rft.volume=6&rft.issue=1&rft_id=info:doi/10.1128%2FmSphere.01202-20&rft_id=info%3Apmid%2F33627512&rft.externalDocID=33627512 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2379-5042&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2379-5042&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2379-5042&client=summon |