Distributed Parallel Computing in Stochastic Modeling of Groundwater Systems

Stochastic modeling is a rapidly evolving, popular approach to the study of the uncertainty and heterogeneity of groundwater systems. However, the use of Monte Carlo‐type simulations to solve practical groundwater problems often encounters computational bottlenecks that hinder the acquisition of mea...

Full description

Saved in:
Bibliographic Details
Published in:Ground water Vol. 51; no. 2; pp. 293 - 297
Main Authors: Dong, Yanhui, Li, Guomin, Xu, Haizhen
Format: Journal Article
Language:English
Published: Oxford, UK Blackwell Publishing Ltd 01.03.2013
Ground Water Publishing Company
Subjects:
ISSN:0017-467X, 1745-6584, 1745-6584
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Stochastic modeling is a rapidly evolving, popular approach to the study of the uncertainty and heterogeneity of groundwater systems. However, the use of Monte Carlo‐type simulations to solve practical groundwater problems often encounters computational bottlenecks that hinder the acquisition of meaningful results. To improve the computational efficiency, a system that combines stochastic model generation with MODFLOW‐related programs and distributed parallel processing is investigated. The distributed computing framework, called the Java Parallel Processing Framework, is integrated into the system to allow the batch processing of stochastic models in distributed and parallel systems. As an example, the system is applied to the stochastic delineation of well capture zones in the Pinggu Basin in Beijing. Through the use of 50 processing threads on a cluster with 10 multicore nodes, the execution times of 500 realizations are reduced to 3% compared with those of a serial execution. Through this application, the system demonstrates its potential in solving difficult computational problems in practical stochastic modeling.
AbstractList Stochastic modeling is a rapidly evolving, popular approach to the study of the uncertainty and heterogeneity of groundwater systems. However, the use of Monte Carlo-type simulations to solve practical groundwater problems often encounters computational bottlenecks that hinder the acquisition of meaningful results. To improve the computational efficiency, a system that combines stochastic model generation with MODFLOW-related programs and distributed parallel processing is investigated. The distributed computing framework, called the Java Parallel Processing Framework, is integrated into the system to allow the batch processing of stochastic models in distributed and parallel systems. As an example, the system is applied to the stochastic delineation of well capture zones in the Pinggu Basin in Beijing. Through the use of 50 processing threads on a cluster with 10 multicore nodes, the execution times of 500 realizations are reduced to 3% compared with those of a serial execution. Through this application, the system demonstrates its potential in solving difficult computational problems in practical stochastic modeling.Stochastic modeling is a rapidly evolving, popular approach to the study of the uncertainty and heterogeneity of groundwater systems. However, the use of Monte Carlo-type simulations to solve practical groundwater problems often encounters computational bottlenecks that hinder the acquisition of meaningful results. To improve the computational efficiency, a system that combines stochastic model generation with MODFLOW-related programs and distributed parallel processing is investigated. The distributed computing framework, called the Java Parallel Processing Framework, is integrated into the system to allow the batch processing of stochastic models in distributed and parallel systems. As an example, the system is applied to the stochastic delineation of well capture zones in the Pinggu Basin in Beijing. Through the use of 50 processing threads on a cluster with 10 multicore nodes, the execution times of 500 realizations are reduced to 3% compared with those of a serial execution. Through this application, the system demonstrates its potential in solving difficult computational problems in practical stochastic modeling.
Stochastic modeling is a rapidly evolving, popular approach to the study of the uncertainty and heterogeneity of groundwater systems. However, the use of Monte Carlo‐type simulations to solve practical groundwater problems often encounters computational bottlenecks that hinder the acquisition of meaningful results. To improve the computational efficiency, a system that combines stochastic model generation with MODFLOW‐related programs and distributed parallel processing is investigated. The distributed computing framework, called the Java Parallel Processing Framework, is integrated into the system to allow the batch processing of stochastic models in distributed and parallel systems. As an example, the system is applied to the stochastic delineation of well capture zones in the Pinggu Basin in Beijing. Through the use of 50 processing threads on a cluster with 10 multicore nodes, the execution times of 500 realizations are reduced to 3% compared with those of a serial execution. Through this application, the system demonstrates its potential in solving difficult computational problems in practical stochastic modeling.
Stochastic modeling is a rapidly evolving, popular approach to the study of the uncertainty and heterogeneity of groundwater systems. However, the use of Monte Carlo-type simulations to solve practical groundwater problems often encounters computational bottlenecks that hinder the acquisition of meaningful results. To improve the computational efficiency, a system that combines stochastic model generation with MODFLOW-related programs and distributed parallel processing is investigated. The distributed computing framework, called the Java Parallel Processing Framework, is integrated into the system to allow the batch processing of stochastic models in distributed and parallel systems. As an example, the system is applied to the stochastic delineation of well capture zones in the Pinggu Basin in Beijing. Through the use of 50 processing threads on a cluster with 10 multicore nodes, the execution times of 500 realizations are reduced to 3% compared with those of a serial execution. Through this application, the system demonstrates its potential in solving difficult computational problems in practical stochastic modeling. [PUBLICATION ABSTRACT]
Author Xu, Haizhen
Li, Guomin
Dong, Yanhui
Author_xml – sequence: 1
  givenname: Yanhui
  surname: Dong
  fullname: Dong, Yanhui
  organization: Key Laboratory of Engineering Geomechanics, Institute of Geology and Geophysics, Chinese Academy of Sciences, P.O. BOX 9825, Beijing, China; lemondyh@mail.iggcas.ac.cn; hzxu-snower@mail.iggcas.ac.cn
– sequence: 2
  givenname: Guomin
  surname: Li
  fullname: Li, Guomin
  email: guominli@mail.iggcas.ac.cn
  organization: E-mail: guominli@mail.iggcas.ac.cn
– sequence: 3
  givenname: Haizhen
  surname: Xu
  fullname: Xu, Haizhen
  organization: Key Laboratory of Engineering Geomechanics, Institute of Geology and Geophysics, Chinese Academy of Sciences, P.O. BOX 9825, Beijing, China; lemondyh@mail.iggcas.ac.cn; hzxu-snower@mail.iggcas.ac.cn
BackLink https://www.ncbi.nlm.nih.gov/pubmed/22823593$$D View this record in MEDLINE/PubMed
BookMark eNqNks9v0zAcxS00xLrCv4AiceGSzL8dH0DaOihIBSY2NMTFch0HXJK4sx2t_e-X0NHDLqsvtvz9vGfJ752Ao853FoAMwQIN63RVIEFZzllJCwwRLiCUXBSbZ2CyHxyBCYRI5JSLn8fgJMYVhJBIKF-AY4xLTJgkE7C4cDEFt-yTrbJLHXTT2Cab-XbdJ9f9zlyXXSVv_uiYnMm--Mo247Wvs3nwfVfd6WRDdrWNybbxJXhe6ybaVw_7FPz4-OF69ilffJt_np0tcs2YEHmtUY0pYtJoWTKEuSSMIFvapcEQC00roqnGZimNtWUNZWVgRXlFl4RbWhMyBW93vuvgb3sbk2pdNLZpdGd9HxXiDJESIiieRinlWGAG6dMowQRTDhE6AEWMEyjJ6PrmEbryfeiG7xkNkSCoHLKYgtcPVL9sbaXWwbU6bNX_oAag3AEm-BiDrfcIgmrshFqpMXo1Rq_GTqh_nVCbQfr-kdS4pJPzXQraNYcYvNsZ3LnGbg9-WM1vzq6H06DPd_qhanaz1-vwVw1TwdTN17n6df6dnV_QS0XJPSXR3I0
CODEN GRWAAP
CitedBy_id crossref_primary_10_1007_s10040_015_1254_1
crossref_primary_10_1061__ASCE_WW_1943_5460_0000356
crossref_primary_10_1111_gwat_13024
crossref_primary_10_1016_j_jhydrol_2018_06_042
Cites_doi 10.1111/j.1745-6584.2009.00598.x
10.1016/j.advwatres.2003.08.003
10.1007/s00477-004-0192-6
10.2136/vzj2002.2070
10.1016/S0022-1694(98)00102-4
10.1109/icbbe.2011.5780860
10.1111/j.1745-6584.2007.00320.x
10.1111/j.1745-6584.2004.tb02623.x
10.1016/j.cageo.2011.10.005
10.3133/ofr200092
10.1111/j.1745-6584.1999.tb00951.x
10.1111/j.1745-6584.1988.tb00425.x
10.1111/j.1745-6584.2004.t01-10-.x
ContentType Journal Article
Copyright 2012, The Author(s). Groundwater © 2012, National Ground Water Association
2012, The Author(s). Groundwater © 2012, National Ground Water Association.
Copyright Ground Water Publishing Company Mar/Apr 2013
Copyright_xml – notice: 2012, The Author(s). Groundwater © 2012, National Ground Water Association
– notice: 2012, The Author(s). Groundwater © 2012, National Ground Water Association.
– notice: Copyright Ground Water Publishing Company Mar/Apr 2013
DBID BSCLL
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QH
7ST
7UA
C1K
F1W
H96
H97
K9.
L.G
SOI
7X8
7TG
KL.
7S9
L.6
7SU
8FD
FR3
KR7
DOI 10.1111/j.1745-6584.2012.00967.x
DatabaseName Istex
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Aqualine
Environment Abstracts
Water Resources Abstracts
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality
ProQuest Health & Medical Complete (Alumni)
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Environment Abstracts
MEDLINE - Academic
Meteorological & Geoastrophysical Abstracts
Meteorological & Geoastrophysical Abstracts - Academic
AGRICOLA
AGRICOLA - Academic
Environmental Engineering Abstracts
Technology Research Database
Engineering Research Database
Civil Engineering Abstracts
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
ASFA: Aquatic Sciences and Fisheries Abstracts
ProQuest Health & Medical Complete (Alumni)
Aqualine
Environment Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality
Water Resources Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
Meteorological & Geoastrophysical Abstracts
Meteorological & Geoastrophysical Abstracts - Academic
AGRICOLA
AGRICOLA - Academic
Civil Engineering Abstracts
Engineering Research Database
Technology Research Database
Environmental Engineering Abstracts
DatabaseTitleList MEDLINE - Academic

Aquatic Science & Fisheries Abstracts (ASFA) Professional
Aquatic Science & Fisheries Abstracts (ASFA) Professional
MEDLINE
Civil Engineering Abstracts
CrossRef
AGRICOLA
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Geography
Engineering
EISSN 1745-6584
EndPage 297
ExternalDocumentID 2931612261
22823593
10_1111_j_1745_6584_2012_00967_x
GWAT967
ark_67375_WNG_ZBR5BD4P_4
Genre article
Research Support, Non-U.S. Gov't
Journal Article
Feature
GeographicLocations Beijing China
China
China, People's Rep., Beijing
Indonesia
GeographicLocations_xml – name: China
– name: Beijing China
– name: China, People's Rep., Beijing
– name: Indonesia
GroupedDBID ---
-DZ
-~X
.3N
.DC
.GA
.Y3
05W
0R~
10A
186
1OB
1OC
29I
31~
33P
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5HH
5LA
5VS
66C
702
7PT
7X2
7X7
7XC
8-0
8-1
8-3
8-4
8-5
88E
88I
8CJ
8FE
8FG
8FH
8FI
8FJ
8G5
8R4
8R5
8UM
930
A03
AAESR
AAEVG
AAHBH
AAHQN
AAMMB
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABJCF
ABJNI
ABPPZ
ABPVW
ABUWG
ACAHQ
ACBWZ
ACCZN
ACGFO
ACGFS
ACGOD
ACIWK
ACNCT
ACPOU
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADXHL
ADZMN
AEFGJ
AEGXH
AEIGN
AEIMD
AENEX
AETEA
AEUYN
AEUYR
AEYWJ
AFBPY
AFFHD
AFFPM
AFGKR
AFKRA
AFRAH
AFWVQ
AFZJQ
AGHNM
AGQPQ
AGXDD
AGYGG
AHBTC
AHEFC
AI.
AIAGR
AIDQK
AIDYY
AIQQE
AITYG
AIURR
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALVPJ
AMBMR
AMYDB
ASPBG
ATCPS
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZQEC
AZVAB
BAFTC
BCR
BCU
BDRZF
BEC
BENPR
BES
BFHJK
BGLVJ
BHBCM
BHPHI
BKOMP
BKSAR
BLC
BMNLL
BMXJE
BNHUX
BPHCQ
BROTX
BRXPI
BSCLL
BVXVI
BY8
CAG
CCPQU
COF
CS3
D-E
D-F
D1J
D1K
DC6
DCZOG
DDYGU
DPXWK
DR2
DRFUL
DRSTM
DWQXO
EBS
EJD
F00
F01
F04
F5P
FEDTE
FYUFA
FZ0
G-S
G.N
GNUQQ
GODZA
GUQSH
H.T
H.X
HCIFZ
HF~
HGLYW
HMCUK
HVGLF
HZI
HZ~
IAG
IAO
IEA
IEP
IOF
ITC
IX1
J0M
K48
K6-
L6V
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LK5
LOXES
LP6
LP7
LUTES
LW6
LYRES
M0K
M1P
M2O
M2P
M7R
M7S
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
P2P
P2W
P2X
P4D
PALCI
PATMY
PCBAR
PEA
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
PQQKQ
PRG
PROAC
PSQYO
PTHSS
PYCSY
Q.N
Q11
Q2X
QB0
R.K
R05
RIWAO
RJQFR
ROL
RWL
RX1
S0X
SAMSI
SJFOW
SUPJJ
TAE
TN5
UB1
UKHRP
V8K
VH1
VJK
W8V
W99
WBKPD
WIH
WIK
WLBEL
WOHZO
WQJ
WXSBR
WYISQ
XG1
Y6R
ZCA
ZZTAW
~02
~IA
~KM
~WT
3V.
AAHHS
ACCFJ
ADZOD
AEEZP
AEQDE
AEUQT
AFPWT
AIWBW
AJBDE
ALIPV
ALUQN
WRC
YCJ
AAYXX
CITATION
O8X
CGR
CUY
CVF
ECM
EIF
NPM
7QH
7ST
7UA
C1K
F1W
H96
H97
K9.
L.G
SOI
7X8
7TG
KL.
7S9
L.6
7SU
8FD
FR3
KR7
ID FETCH-LOGICAL-a5577-fa1f24159ca98512693531e8ebc2027a4d3a4a2cb9cee8f09dc0d46d4b36e4f33
IEDL.DBID DRFUL
ISICitedReferencesCount 4
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000315961100018&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0017-467X
1745-6584
IngestDate Tue Oct 07 09:36:54 EDT 2025
Fri Sep 05 17:27:53 EDT 2025
Tue Oct 07 10:00:17 EDT 2025
Thu Oct 02 07:39:15 EDT 2025
Tue Oct 07 05:12:57 EDT 2025
Thu Apr 03 06:55:30 EDT 2025
Sat Nov 29 06:55:59 EST 2025
Tue Nov 18 22:02:49 EST 2025
Wed Jan 22 16:51:32 EST 2025
Tue Nov 11 03:33:46 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
2012, The Author(s). Groundwater © 2012, National Ground Water Association.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a5577-fa1f24159ca98512693531e8ebc2027a4d3a4a2cb9cee8f09dc0d46d4b36e4f33
Notes ark:/67375/WNG-ZBR5BD4P-4
istex:16B7B89DE8ABC5D66BA5020E8E06505A4A743841
ArticleID:GWAT967
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
PMID 22823593
PQID 1321731882
PQPubID 48478
PageCount 5
ParticipantIDs proquest_miscellaneous_1651380107
proquest_miscellaneous_1446272504
proquest_miscellaneous_1323246011
proquest_miscellaneous_1315630934
proquest_journals_1321731882
pubmed_primary_22823593
crossref_primary_10_1111_j_1745_6584_2012_00967_x
crossref_citationtrail_10_1111_j_1745_6584_2012_00967_x
wiley_primary_10_1111_j_1745_6584_2012_00967_x_GWAT967
istex_primary_ark_67375_WNG_ZBR5BD4P_4
PublicationCentury 2000
PublicationDate 2013-03
March/April 2013
2013-03-00
2013-Mar
20130301
PublicationDateYYYYMMDD 2013-03-01
PublicationDate_xml – month: 03
  year: 2013
  text: 2013-03
PublicationDecade 2010
PublicationPlace Oxford, UK
PublicationPlace_xml – name: Oxford, UK
– name: United States
– name: Dublin
PublicationTitle Ground water
PublicationTitleAlternate Ground Water
PublicationYear 2013
Publisher Blackwell Publishing Ltd
Ground Water Publishing Company
Publisher_xml – name: Blackwell Publishing Ltd
– name: Ground Water Publishing Company
References Franssen, H. J. H., and W. Kinzelbach. 2008. Real-time groundwater flow modeling with the Ensemble Kalman Filter: Joint estimation of states and parameters and the filter inbreeding problem. Water Resources Research 44, W09408. DOI: 10.1029/2007WR006505.
Feyen, L., A.M. Dessalegn, F. De Smedt, S. Gebremeskel, and O. Batelaan. 2004. Application of a Bayesian approach to stochastic delineation of capture zones. Ground Water 42, no. 4: 542-551.
Zheng, C., and P.P. Wang. 1999. MT3DMS-A Modular Three-Dimensional Multispecies Transport Model for Simulation of Advection, Dispersion, and Chemical Reactions of Contaminants in Ground-Water Systems. Documentation and User's Guide. Jacksonville, Florida: U.S. Army Corps of Engineers.
Neuman, S.P. 2004. Stochastic groundwater models in practice. Stochastic Environmental Research and Risk Assessment 18, no. 4: 268-270.
Deutsch, C.V., and A.G. Journel. 1998. GSLIB: Geostatistical Software Library and User's Guide, 2nd ed. New York: Oxford University Press.
van Leeuwen, M., C.B.M. te Stroet, A.P. Butler, and J.A. Tompkins. 1999. Stochastic determination of the Wierden (Netherlands) capture zones. Ground Water 37, no. 1: 8-17.
Li, S.G., D. McLaughlin, and H.S. Liao. 2003. A computationally practical method for stochastic groundwater modeling. Advances in Water Resources 26, no. 11: 1137-1148.
Dong, Y.H., G. Li, and H.Z. Xu. 2012. An areal recharge and discharge simulating method for MODFLOW. Computers & Geosciences 42: 203-205.
Zhang, Y., D.A. Benson, and B. Baeumer. 2007. Predicting the tails of breakthrough curves in regional-scale alluvial systems. Ground Water 45, no. 4: 473-484.
Vassolo, S., W. Kinzelbach, and W. Schäfer. 1998. Determination of well head protection zone by stochastic inverse modeling. Journal of Hydrology 206, no. 3/4: 268-280.
Pollock, D.W. 1988. Semianalytical computation of path lines for finite-difference models. Ground Water 26, no. 6: 743-750.
Yeh, T.J., and J. Simunek. 2002. Stochastic fusion of information for characterizing and monitoring the Vadose Zone. Vadose Zone Journal 1, no. 2: 207-221.
Dong, Y.H., and G. Li. 2009. A Parallel PCG Solver for MODFLOW. Ground Water 47, no. 6: 845-850.
Lemke, L.D., W.A. Barrack, L.M. Abriola, and P. Goovaerts. 2004. Matching solute breakthrough with deterministic and stochastic aquifer models. Ground Water 42, no. 6: 920-934.
2009; 47
2004; 42
1990
2004; 18
2000
2011
1988; 26
1999; 37
1998
2002; 1
1998; 206
2003; 26
2008; 44
2007; 45
2012; 42
1999
e_1_2_7_5_1
e_1_2_7_4_1
Deutsch C.V. (e_1_2_7_2_1) 1998
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_8_1
e_1_2_7_7_1
Franssen H. J. H. (e_1_2_7_6_1) 2008; 44
e_1_2_7_17_1
e_1_2_7_16_1
e_1_2_7_15_1
e_1_2_7_14_1
Zheng C. (e_1_2_7_18_1) 1999
e_1_2_7_13_1
e_1_2_7_12_1
e_1_2_7_11_1
e_1_2_7_10_1
References_xml – reference: Pollock, D.W. 1988. Semianalytical computation of path lines for finite-difference models. Ground Water 26, no. 6: 743-750.
– reference: Zheng, C., and P.P. Wang. 1999. MT3DMS-A Modular Three-Dimensional Multispecies Transport Model for Simulation of Advection, Dispersion, and Chemical Reactions of Contaminants in Ground-Water Systems. Documentation and User's Guide. Jacksonville, Florida: U.S. Army Corps of Engineers.
– reference: Deutsch, C.V., and A.G. Journel. 1998. GSLIB: Geostatistical Software Library and User's Guide, 2nd ed. New York: Oxford University Press.
– reference: Feyen, L., A.M. Dessalegn, F. De Smedt, S. Gebremeskel, and O. Batelaan. 2004. Application of a Bayesian approach to stochastic delineation of capture zones. Ground Water 42, no. 4: 542-551.
– reference: Franssen, H. J. H., and W. Kinzelbach. 2008. Real-time groundwater flow modeling with the Ensemble Kalman Filter: Joint estimation of states and parameters and the filter inbreeding problem. Water Resources Research 44, W09408. DOI: 10.1029/2007WR006505.
– reference: Yeh, T.J., and J. Simunek. 2002. Stochastic fusion of information for characterizing and monitoring the Vadose Zone. Vadose Zone Journal 1, no. 2: 207-221.
– reference: Li, S.G., D. McLaughlin, and H.S. Liao. 2003. A computationally practical method for stochastic groundwater modeling. Advances in Water Resources 26, no. 11: 1137-1148.
– reference: Zhang, Y., D.A. Benson, and B. Baeumer. 2007. Predicting the tails of breakthrough curves in regional-scale alluvial systems. Ground Water 45, no. 4: 473-484.
– reference: Lemke, L.D., W.A. Barrack, L.M. Abriola, and P. Goovaerts. 2004. Matching solute breakthrough with deterministic and stochastic aquifer models. Ground Water 42, no. 6: 920-934.
– reference: Neuman, S.P. 2004. Stochastic groundwater models in practice. Stochastic Environmental Research and Risk Assessment 18, no. 4: 268-270.
– reference: Vassolo, S., W. Kinzelbach, and W. Schäfer. 1998. Determination of well head protection zone by stochastic inverse modeling. Journal of Hydrology 206, no. 3/4: 268-280.
– reference: van Leeuwen, M., C.B.M. te Stroet, A.P. Butler, and J.A. Tompkins. 1999. Stochastic determination of the Wierden (Netherlands) capture zones. Ground Water 37, no. 1: 8-17.
– reference: Dong, Y.H., and G. Li. 2009. A Parallel PCG Solver for MODFLOW. Ground Water 47, no. 6: 845-850.
– reference: Dong, Y.H., G. Li, and H.Z. Xu. 2012. An areal recharge and discharge simulating method for MODFLOW. Computers & Geosciences 42: 203-205.
– volume: 47
  start-page: 845
  issue: 6
  year: 2009
  end-page: 850.
  article-title: A Parallel PCG Solver for MODFLOW
  publication-title: Ground Water
– volume: 18
  start-page: 268
  issue: 4
  year: 2004
  end-page: 270.
  article-title: Stochastic groundwater models in practice
  publication-title: Stochastic Environmental Research and Risk Assessment
– volume: 44
  start-page: W09408.
  year: 2008
  article-title: Real‐time groundwater flow modeling with the Ensemble Kalman Filter: Joint estimation of states and parameters and the filter inbreeding problem
  publication-title: Water Resources Research
– volume: 42
  start-page: 203
  year: 2012
  end-page: 205
  article-title: An areal recharge and discharge simulating method for MODFLOW
  publication-title: Computers & Geosciences
– start-page: 2566
  year: 2011
  end-page: 2569.
– volume: 26
  start-page: 1137
  issue: 11
  year: 2003
  end-page: 1148.
  article-title: A computationally practical method for stochastic groundwater modeling
  publication-title: Advances in Water Resources
– volume: 206
  start-page: 268
  issue: 3/4
  year: 1998
  end-page: 280.
  article-title: Determination of well head protection zone by stochastic inverse modeling
  publication-title: Journal of Hydrology
– year: 2000
– volume: 1
  start-page: 207
  issue: 2
  year: 2002
  end-page: 221.
  article-title: Stochastic fusion of information for characterizing and monitoring the Vadose Zone
  publication-title: Vadose Zone Journal
– volume: 45
  start-page: 473
  issue: 4
  year: 2007
  end-page: 484.
  article-title: Predicting the tails of breakthrough curves in regional‐scale alluvial systems
  publication-title: Ground Water
– volume: 42
  start-page: 542
  issue: 4
  year: 2004
  end-page: 551.
  article-title: Application of a Bayesian approach to stochastic delineation of capture zones
  publication-title: Ground Water
– year: 1990
– volume: 42
  start-page: 920
  issue: 6
  year: 2004
  end-page: 934.
  article-title: Matching solute breakthrough with deterministic and stochastic aquifer models
  publication-title: Ground Water
– volume: 37
  start-page: 8
  issue: 1
  year: 1999
  end-page: 17.
  article-title: Stochastic determination of the Wierden (Netherlands) capture zones
  publication-title: Ground Water
– year: 1998
– volume: 26
  start-page: 743
  issue: 6
  year: 1988
  end-page: 750.
  article-title: Semianalytical computation of path lines for finite‐difference models
  publication-title: Ground Water
– year: 1999
– ident: e_1_2_7_3_1
  doi: 10.1111/j.1745-6584.2009.00598.x
– ident: e_1_2_7_8_1
– volume-title: GSLIB: Geostatistical Software Library and User's Guide
  year: 1998
  ident: e_1_2_7_2_1
– ident: e_1_2_7_10_1
  doi: 10.1016/j.advwatres.2003.08.003
– ident: e_1_2_7_11_1
  doi: 10.1007/s00477-004-0192-6
– volume: 44
  start-page: W09408.
  year: 2008
  ident: e_1_2_7_6_1
  article-title: Real‐time groundwater flow modeling with the Ensemble Kalman Filter: Joint estimation of states and parameters and the filter inbreeding problem
  publication-title: Water Resources Research
– ident: e_1_2_7_16_1
  doi: 10.2136/vzj2002.2070
– ident: e_1_2_7_14_1
  doi: 10.1016/S0022-1694(98)00102-4
– ident: e_1_2_7_15_1
  doi: 10.1109/icbbe.2011.5780860
– ident: e_1_2_7_17_1
  doi: 10.1111/j.1745-6584.2007.00320.x
– volume-title: MT3DMS—A Modular Three‐Dimensional Multispecies Transport Model for Simulation of Advection, Dispersion, and Chemical Reactions of Contaminants in Ground‐Water Systems
  year: 1999
  ident: e_1_2_7_18_1
– ident: e_1_2_7_5_1
  doi: 10.1111/j.1745-6584.2004.tb02623.x
– ident: e_1_2_7_4_1
  doi: 10.1016/j.cageo.2011.10.005
– ident: e_1_2_7_7_1
  doi: 10.3133/ofr200092
– ident: e_1_2_7_13_1
  doi: 10.1111/j.1745-6584.1999.tb00951.x
– ident: e_1_2_7_12_1
  doi: 10.1111/j.1745-6584.1988.tb00425.x
– ident: e_1_2_7_9_1
  doi: 10.1111/j.1745-6584.2004.t01-10-.x
SSID ssj0003909
Score 2.0284324
Snippet Stochastic modeling is a rapidly evolving, popular approach to the study of the uncertainty and heterogeneity of groundwater systems. However, the use of Monte...
SourceID proquest
pubmed
crossref
wiley
istex
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 293
SubjectTerms basins
batch systems
China
Computation
Computer Simulation
Distributed processing
Encounters
Groundwater
Heterogeneity
hydrologic models
Indonesia
Java (programming language)
Models, Theoretical
Monte Carlo Method
Monte Carlo simulation
Parallel processing
Stochastic models
Stochastic Processes
Stochasticity
uncertainty
Title Distributed Parallel Computing in Stochastic Modeling of Groundwater Systems
URI https://api.istex.fr/ark:/67375/WNG-ZBR5BD4P-4/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fj.1745-6584.2012.00967.x
https://www.ncbi.nlm.nih.gov/pubmed/22823593
https://www.proquest.com/docview/1321731882
https://www.proquest.com/docview/1315630934
https://www.proquest.com/docview/1323246011
https://www.proquest.com/docview/1446272504
https://www.proquest.com/docview/1651380107
Volume 51
WOSCitedRecordID wos000315961100018&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1745-6584
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0003909
  issn: 0017-467X
  databaseCode: DRFUL
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db9MwED9BiwQ88DG-AmMyEuKtqIkdfzxulI6HqqrGplW8WE7saBNTitIOxn_PXZJGK5qqCfEWKWdLOd-df-ecfwfwPhOJkj7Tg8LxgAlKMAOtqQiAiFX8MNPG1SSuEzWd6vnczNr6J7oL0_BDdAdu5Bl1vCYHd9ly08mVSAe0g1KFFvFuGqk-Ip7sJ2jGogf90dH4ZNLFZczuzTouY3iY_13Xc8NcG5tVn_R-dRMS3QS29c40fvw_v-kJPGrxKdtvDOop3AnlDjy8xlq4A_fbxulnv5_BZETEu9QzK3g2cxV1ZrlgTasIFGbnJfu6WuRnjuigGTVeo-vvbFEwOvQq_S-EuhVradOfw8n48_GnL4O2QcPApalSuL5xQQjA5M4gckuk4ejSQYcspzMVJzx3wiV5ZnAr1sXQ-HzohfQi4zKIgvMX0CsXZXgFTKmicNIpz30hcAoTZwUX1NxS6jz3MgK1Xgmbt-zl1ETjwl7LYlB3lnRnSXe21p29iiDuRv5oGDxuMeZDvdjdAFd9pwo4ldrT6aH9dnCUHozEzIoIdtfWYFvnX1pM8GOFsVInEbzrXqPb0r8YV4bFJcnExMxmuNgmQ3AXM-Z4iwym84kiHrotMjKNOSKRoYrgZWOx3YclmHLz1PAIZG2Yt1aRPTzdP8an1_868A08SOrWIlTPtwu9VXUZ3sK9_OfqfFntwV0113utC_8B0RRAJA
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db9MwED-hFmnwwMf4CgwwEuItqIkdO37cKN0QpapGp1W8WE7saBNTirIOxn_PXZJGK5qqCfEWKWdLOd-d75zz7wfwNhOxki5Lw8JyjwWK12GaUhMAAau4QZZqW4O4jtVkks7netrSAdFdmAYfojtwI8-o4zU5OB1Ir3u5EklIWyi1aBHwppbqPSaUfYFWlfSgPzwcHY27wIzlvV4FZowP878be66Za2236pPiL69LRdcz23prGt3_rx_1AO61GSrbbUzqIdzy5TbcvYJbuA1bLXX6ye9HMB4S9C6xZnnHprYibpYz1pBFoDA7LdnX5SI_sQQIzYh6jS7As0XB6NirdL8w2a1YC5z-GI5GH2cfDsKWoiG0SaIUrnBUUA6gc6sxd4ul5ujUPvVZTqcqVjhuhY3zTONmnBYD7fKBE9KJjEsvCs6fQK9clP4ZMKWKwkqrHHeFwCl0lBVcEL2lTPPcyQDUailM3uKXE43GmblSx6DuDOnOkO5MrTtzGUDUjfzRYHjcYMy7erW7Abb6Tj1wKjHHk33zbe8w2RuKqREB7KzMwbTuf26wxI8URss0DuBN9xodl_7G2NIvLkgmImw2zcUmGUp4sWaONshgQR8rQqLbICOTiGMuMlABPG1MtvuwGItunmgegKwt88YqMvvHuzN8ev6vA1_D1sHsy9iMP00-v4A7cU00Qt19O9BbVhf-JdzOfy5Pz6tXrSf_AXuzQyw
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3da9swED9GM_bxsI_uy1u3aTD2lhJbsmQ9tsvSjYUQupaGvQjZkmhZcYqbbt1_vzvbMc0ooYy9GXwy-KQ7_U4-_34A73ORKOnyrB8s91igeN3PMmoCIGIVN8gzbWsS17GaTLLZTE9bOSD6F6bhh-gO3Cgy6nxNAe7PXFiNciXSPm2h1KJFxJtaqm0ElD2RaolR2hvujw7HXWLG8l4vEzPmh9nfjT3XPGtlt-qR4y-vg6KryLbemkYP_-tLPYIHLUJlO82Segy3fLkJ96_wFm7C3VY6_fj3ExgPiXqXVLO8Y1NbkTbLKWvEItCYnZTs22JeHFsihGYkvUY_wLN5YHTsVbpfCHYr1hKnP4XD0aeDj5_7rURD36apUjjDcSAMoAurEbslUnMMap_5vKBTFSsct8ImRa5xM87CQLti4IR0IufSi8D5M9go56V_AUypEKy0ynEXBD5Cx3ngguQtZVYUTkagllNhipa_nGQ0Ts2VOgZ9Z8h3hnxnat-ZywjibuRZw-FxgzEf6tnuBtjqB_XAqdQcTfbM9939dHcopkZEsLVcDqYN_3ODJX6sMFtmSQTvutsYuPQ1xpZ-fkE2MXGzaS7W2RDgxZo5XmODBX2iiIlujY1MY45YZKAieN4s2e7FEiy6eap5BLJemTd2kdk72jnAq5f_OvAt3JkOR2b8ZfL1FdxLap0Rau7bgo1FdeFfw-3i5-LkvHrTBvIfoEhCpw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Distributed+Parallel+Computing+in+Stochastic+Modeling+of+Groundwater+Systems&rft.jtitle=Ground+water&rft.au=Dong%2C+Yanhui&rft.au=Li%2C+Guomin&rft.au=Xu%2C+Haizhen&rft.date=2013-03-01&rft.pub=Blackwell+Publishing+Ltd&rft.issn=0017-467X&rft.eissn=1745-6584&rft.volume=51&rft.issue=2&rft.spage=293&rft.epage=297&rft_id=info:doi/10.1111%2Fj.1745-6584.2012.00967.x&rft.externalDBID=n%2Fa&rft.externalDocID=ark_67375_WNG_ZBR5BD4P_4
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0017-467X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0017-467X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0017-467X&client=summon