Toward a predictive model of Alzheimer's disease progression using capillary electrophoresis-mass spectrometry metabolomics

Alzheimer's disease (AD) is the most prevalent form of dementia with an estimated worldwide prevalence of over 30 million people, and its incidence is expected to increase dramatically with an increasing elderly population. Up until now, cerebrospinal fluid (CSF) has been the preferred sample t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Analytical chemistry (Washington) Jg. 84; H. 20; S. 8532
Hauptverfasser: Ibáñez, Clara, Simó, Carolina, Martín-Álvarez, Pedro J, Kivipelto, Miia, Winblad, Bengt, Cedazo-Mínguez, Angel, Cifuentes, Alejandro
Format: Journal Article
Sprache:Englisch
Veröffentlicht: United States 16.10.2012
Schlagworte:
ISSN:1520-6882, 1520-6882
Online-Zugang:Weitere Angaben
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Alzheimer's disease (AD) is the most prevalent form of dementia with an estimated worldwide prevalence of over 30 million people, and its incidence is expected to increase dramatically with an increasing elderly population. Up until now, cerebrospinal fluid (CSF) has been the preferred sample to investigate central nervous system (CNS) disorders since its composition is directly related to metabolite production in the brain. In this work, a nontargeted metabolomic approach based on capillary electrophoresis-mass spectrometry (CE-MS) is developed to examine metabolic differences in CSF samples from subjects with different cognitive status related to AD progression. To do this, CSF samples from 85 subjects were obtained from patients with (i) subjective cognitive impairment (SCI, i.e. control group), (ii) mild cognitive impairment (MCI) which remained stable after a follow-up period of 2 years, (iii) MCI which progressed to AD within a 2-year time after the initial MCI diagnostic and, (iv) diagnosed AD. A prediction model for AD progression using multivariate statistical analysis based on CE-MS metabolomics of CSF samples was obtained using 73 CSF samples. Using our model, we were able to correctly classify 97-100% of the samples in the diagnostic groups. The prediction power was confirmed in a blind small test set of 12 CSF samples, reaching a 83% of diagnostic accuracy. The obtained predictive values were higher than those reported with classical CSF AD biomarkers (Aβ42 and tau) but need to be confirmed in larger samples cohorts. Choline, dimethylarginine, arginine, valine, proline, serine, histidine, creatine, carnitine, and suberylglycine were identified as possible disease progression biomarkers. Our results suggest that CE-MS metabolomics of CSF samples can be a useful tool to predict AD progression.
AbstractList Alzheimer's disease (AD) is the most prevalent form of dementia with an estimated worldwide prevalence of over 30 million people, and its incidence is expected to increase dramatically with an increasing elderly population. Up until now, cerebrospinal fluid (CSF) has been the preferred sample to investigate central nervous system (CNS) disorders since its composition is directly related to metabolite production in the brain. In this work, a nontargeted metabolomic approach based on capillary electrophoresis-mass spectrometry (CE-MS) is developed to examine metabolic differences in CSF samples from subjects with different cognitive status related to AD progression. To do this, CSF samples from 85 subjects were obtained from patients with (i) subjective cognitive impairment (SCI, i.e. control group), (ii) mild cognitive impairment (MCI) which remained stable after a follow-up period of 2 years, (iii) MCI which progressed to AD within a 2-year time after the initial MCI diagnostic and, (iv) diagnosed AD. A prediction model for AD progression using multivariate statistical analysis based on CE-MS metabolomics of CSF samples was obtained using 73 CSF samples. Using our model, we were able to correctly classify 97-100% of the samples in the diagnostic groups. The prediction power was confirmed in a blind small test set of 12 CSF samples, reaching a 83% of diagnostic accuracy. The obtained predictive values were higher than those reported with classical CSF AD biomarkers (Aβ42 and tau) but need to be confirmed in larger samples cohorts. Choline, dimethylarginine, arginine, valine, proline, serine, histidine, creatine, carnitine, and suberylglycine were identified as possible disease progression biomarkers. Our results suggest that CE-MS metabolomics of CSF samples can be a useful tool to predict AD progression.Alzheimer's disease (AD) is the most prevalent form of dementia with an estimated worldwide prevalence of over 30 million people, and its incidence is expected to increase dramatically with an increasing elderly population. Up until now, cerebrospinal fluid (CSF) has been the preferred sample to investigate central nervous system (CNS) disorders since its composition is directly related to metabolite production in the brain. In this work, a nontargeted metabolomic approach based on capillary electrophoresis-mass spectrometry (CE-MS) is developed to examine metabolic differences in CSF samples from subjects with different cognitive status related to AD progression. To do this, CSF samples from 85 subjects were obtained from patients with (i) subjective cognitive impairment (SCI, i.e. control group), (ii) mild cognitive impairment (MCI) which remained stable after a follow-up period of 2 years, (iii) MCI which progressed to AD within a 2-year time after the initial MCI diagnostic and, (iv) diagnosed AD. A prediction model for AD progression using multivariate statistical analysis based on CE-MS metabolomics of CSF samples was obtained using 73 CSF samples. Using our model, we were able to correctly classify 97-100% of the samples in the diagnostic groups. The prediction power was confirmed in a blind small test set of 12 CSF samples, reaching a 83% of diagnostic accuracy. The obtained predictive values were higher than those reported with classical CSF AD biomarkers (Aβ42 and tau) but need to be confirmed in larger samples cohorts. Choline, dimethylarginine, arginine, valine, proline, serine, histidine, creatine, carnitine, and suberylglycine were identified as possible disease progression biomarkers. Our results suggest that CE-MS metabolomics of CSF samples can be a useful tool to predict AD progression.
Alzheimer's disease (AD) is the most prevalent form of dementia with an estimated worldwide prevalence of over 30 million people, and its incidence is expected to increase dramatically with an increasing elderly population. Up until now, cerebrospinal fluid (CSF) has been the preferred sample to investigate central nervous system (CNS) disorders since its composition is directly related to metabolite production in the brain. In this work, a nontargeted metabolomic approach based on capillary electrophoresis-mass spectrometry (CE-MS) is developed to examine metabolic differences in CSF samples from subjects with different cognitive status related to AD progression. To do this, CSF samples from 85 subjects were obtained from patients with (i) subjective cognitive impairment (SCI, i.e. control group), (ii) mild cognitive impairment (MCI) which remained stable after a follow-up period of 2 years, (iii) MCI which progressed to AD within a 2-year time after the initial MCI diagnostic and, (iv) diagnosed AD. A prediction model for AD progression using multivariate statistical analysis based on CE-MS metabolomics of CSF samples was obtained using 73 CSF samples. Using our model, we were able to correctly classify 97-100% of the samples in the diagnostic groups. The prediction power was confirmed in a blind small test set of 12 CSF samples, reaching a 83% of diagnostic accuracy. The obtained predictive values were higher than those reported with classical CSF AD biomarkers (Aβ42 and tau) but need to be confirmed in larger samples cohorts. Choline, dimethylarginine, arginine, valine, proline, serine, histidine, creatine, carnitine, and suberylglycine were identified as possible disease progression biomarkers. Our results suggest that CE-MS metabolomics of CSF samples can be a useful tool to predict AD progression.
Author Cifuentes, Alejandro
Ibáñez, Clara
Simó, Carolina
Winblad, Bengt
Kivipelto, Miia
Martín-Álvarez, Pedro J
Cedazo-Mínguez, Angel
Author_xml – sequence: 1
  givenname: Clara
  surname: Ibáñez
  fullname: Ibáñez, Clara
  organization: Laboratory of Foodomics, CIAL (CSIC), Nicolas Cabrera 9, 28049 Madrid, Spain
– sequence: 2
  givenname: Carolina
  surname: Simó
  fullname: Simó, Carolina
– sequence: 3
  givenname: Pedro J
  surname: Martín-Álvarez
  fullname: Martín-Álvarez, Pedro J
– sequence: 4
  givenname: Miia
  surname: Kivipelto
  fullname: Kivipelto, Miia
– sequence: 5
  givenname: Bengt
  surname: Winblad
  fullname: Winblad, Bengt
– sequence: 6
  givenname: Angel
  surname: Cedazo-Mínguez
  fullname: Cedazo-Mínguez, Angel
– sequence: 7
  givenname: Alejandro
  surname: Cifuentes
  fullname: Cifuentes, Alejandro
BackLink https://www.ncbi.nlm.nih.gov/pubmed/22967182$$D View this record in MEDLINE/PubMed
BookMark eNpNkEtPwzAQhC1URB9w4A8g3-AS8KN1nGNV8ZKQONB75Njb1hDHIZuAgD-PBUXisjtafRrN7JSMmtgAIaecXXIm-JWxknExly8HZMIXgmVKazH6p8dkivjMGOeMqyMyFqJQOddiQr7W8d10jhraduC87f0b0BAd1DRu6LL-3IEP0J0jdR7BICQubjtA9LGhA_pmS61pfV2b7oNCDbbvYruLifCYBYNIsf05BugTkaapYh2Dt3hMDjemRjjZ7xl5urler-6yh8fb-9XyITOLueoz6aQroJCWpT6cb4QuKpHLwuVsrrmTIFyhnDbG6AqkEYVmVjBwcsGVADEjF7-uKfjrANiXwaOFFLiBOGDJORcqVyrXCT3bo0MVwJVt50OqVf69S3wDPYtwJQ
CitedBy_id crossref_primary_10_1155_2017_5472792
crossref_primary_10_1016_j_clinbiochem_2019_07_008
crossref_primary_10_3389_fphar_2024_1441755
crossref_primary_10_1016_j_pnpbp_2023_110830
crossref_primary_10_1007_s11481_014_9578_5
crossref_primary_10_1007_s11011_025_01647_1
crossref_primary_10_1016_j_jtice_2017_05_011
crossref_primary_10_3390_nu11061196
crossref_primary_10_1016_j_jchromb_2014_10_022
crossref_primary_10_1016_j_neuroscience_2018_10_001
crossref_primary_10_1016_j_jchromb_2017_05_003
crossref_primary_10_1016_j_aca_2025_343727
crossref_primary_10_1016_j_brainres_2021_147704
crossref_primary_10_3389_fnagi_2019_00090
crossref_primary_10_1016_j_clinbiochem_2014_07_019
crossref_primary_10_1016_j_nbd_2023_106312
crossref_primary_10_1002_elps_201200694
crossref_primary_10_3233_NHA_180043
crossref_primary_10_3390_biomedicines9030298
crossref_primary_10_3390_cells11213523
crossref_primary_10_1002_elps_201300470
crossref_primary_10_2217_fnl_13_36
crossref_primary_10_1016_j_chroma_2013_06_005
crossref_primary_10_1016_j_jpba_2015_01_025
crossref_primary_10_1016_j_pneurobio_2016_03_003
crossref_primary_10_3389_fpsyt_2023_1149947
crossref_primary_10_1016_j_aca_2019_05_004
crossref_primary_10_1016_j_jchromb_2017_02_008
crossref_primary_10_1016_j_jprot_2019_04_008
crossref_primary_10_1097_NEN_0000000000000091
crossref_primary_10_1002_ddr_21073
crossref_primary_10_1038_s41598_019_50205_0
crossref_primary_10_1038_s44324_024_00016_3
crossref_primary_10_1039_C4MB00747F
crossref_primary_10_1371_journal_pone_0063644
crossref_primary_10_1002_1873_3468_13782
crossref_primary_10_1038_s41598_020_68739_z
crossref_primary_10_3390_metabo14050286
crossref_primary_10_1016_j_bbadis_2013_06_014
crossref_primary_10_1002_elps_201300561
crossref_primary_10_1002_elps_201400392
crossref_primary_10_1007_s00216_025_06048_y
crossref_primary_10_1093_annweh_wxw032
crossref_primary_10_1002_jnr_24048
crossref_primary_10_1038_s44400_025_00021_3
crossref_primary_10_1016_j_nbd_2022_105782
crossref_primary_10_1039_C4AN01296H
crossref_primary_10_1016_j_dyepig_2019_107628
crossref_primary_10_1159_000364816
crossref_primary_10_1016_j_aca_2013_07_042
crossref_primary_10_1016_j_jchromb_2018_05_031
crossref_primary_10_1038_s41598_019_40353_8
crossref_primary_10_1002_elps_201400388
crossref_primary_10_1016_j_npep_2023_102356
crossref_primary_10_1002_bmc_3453
crossref_primary_10_1002_elps_201900115
crossref_primary_10_1016_j_jgg_2019_11_009
crossref_primary_10_3390_metabo12090864
crossref_primary_10_3233_JAD_200305
crossref_primary_10_1007_s00216_013_7061_4
crossref_primary_10_1038_npp_2013_145
crossref_primary_10_1371_journal_pone_0166277
crossref_primary_10_1111_fcp_12654
crossref_primary_10_1007_s00216_014_8102_3
crossref_primary_10_3389_fnagi_2016_00277
crossref_primary_10_1007_s00216_013_6882_5
crossref_primary_10_7603_s40681_014_0025_y
crossref_primary_10_1002_jms_3782
crossref_primary_10_1016_j_trac_2024_117626
crossref_primary_10_1016_j_jalz_2017_01_020
crossref_primary_10_1038_s41598_020_71832_y
crossref_primary_10_3233_JAD_210471
crossref_primary_10_1016_j_jalz_2018_01_003
crossref_primary_10_3233_JAD_141899
crossref_primary_10_1155_2015_354671
crossref_primary_10_1039_C8FO02067A
crossref_primary_10_3390_ijms26073015
crossref_primary_10_1002_elps_201500027
crossref_primary_10_1016_j_ijdevneu_2017_08_001
crossref_primary_10_1016_j_trac_2018_07_006
crossref_primary_10_1016_j_nut_2021_111248
crossref_primary_10_1038_s41467_024_49589_z
crossref_primary_10_2147_CIA_S298743
crossref_primary_10_1007_s11306_021_01828_w
crossref_primary_10_1016_j_chroma_2018_07_007
crossref_primary_10_5604_01_3001_0054_9118
crossref_primary_10_1016_j_jpba_2020_113424
crossref_primary_10_1371_journal_pone_0285401
crossref_primary_10_1016_j_arr_2025_102751
crossref_primary_10_3233_JAD_180711
crossref_primary_10_1002_elps_201400450
crossref_primary_10_3390_ijms24054960
crossref_primary_10_1002_elps_201400196
crossref_primary_10_4155_bio_2016_0216
crossref_primary_10_1051_ocl_2018027
crossref_primary_10_4155_bio_2018_0135
crossref_primary_10_1016_j_jpba_2018_08_046
crossref_primary_10_1016_j_bbadis_2016_03_001
crossref_primary_10_3390_nu12061845
crossref_primary_10_1016_j_tma_2022_10_001
crossref_primary_10_1371_journal_pone_0225380
crossref_primary_10_1186_s40364_018_0119_x
crossref_primary_10_1007_s11306_015_0773_z
crossref_primary_10_1038_s41598_024_77921_6
crossref_primary_10_1016_j_freeradbiomed_2018_06_038
crossref_primary_10_1016_j_trac_2013_06_013
crossref_primary_10_1111_aos_14971
crossref_primary_10_1155_2021_8868690
crossref_primary_10_3390_metabo11040233
crossref_primary_10_1111_jnc_15128
ContentType Journal Article
DBID CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1021/ac301243k
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod no_fulltext_linktorsrc
Discipline Engineering
Chemistry
EISSN 1520-6882
ExternalDocumentID 22967182
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
-DZ
-~X
.DC
.K2
23M
4.4
53G
55A
5GY
5RE
5VS
6J9
7~N
85S
AABXI
AAHBH
ABHFT
ABHMW
ABJNI
ABMVS
ABOCM
ABPPZ
ABQRX
ABUCX
ACBEA
ACGFO
ACGFS
ACGOD
ACIWK
ACJ
ACKOT
ACNCT
ACPRK
ACS
ADHLV
AEESW
AENEX
AFEFF
AFRAH
AGXLV
AHGAQ
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
BAANH
BKOMP
CGR
CS3
CUPRZ
CUY
CVF
D0L
EBS
ECM
ED~
EIF
EJD
F5P
GGK
GNL
IH9
IHE
JG~
KZ1
LG6
LMP
NPM
P2P
PQQKQ
ROL
RXW
TAE
TN5
UHB
UI2
UKR
VF5
VG9
W1F
WH7
X6Y
XSW
YZZ
ZCA
~02
7X8
ABBLG
ABLBI
ID FETCH-LOGICAL-a546t-3d3d9e93c015211f289b2739d70481d3e2d96d8aaa8be3a2980c20ed35162e2
IEDL.DBID 7X8
ISICitedReferencesCount 139
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000309805200016&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1520-6882
IngestDate Fri Jul 11 15:56:43 EDT 2025
Thu Apr 03 07:03:37 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 20
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a546t-3d3d9e93c015211f289b2739d70481d3e2d96d8aaa8be3a2980c20ed35162e2
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 22967182
PQID 1112676678
PQPubID 23479
ParticipantIDs proquest_miscellaneous_1112676678
pubmed_primary_22967182
PublicationCentury 2000
PublicationDate 2012-10-16
PublicationDateYYYYMMDD 2012-10-16
PublicationDate_xml – month: 10
  year: 2012
  text: 2012-10-16
  day: 16
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Analytical chemistry (Washington)
PublicationTitleAlternate Anal Chem
PublicationYear 2012
SSID ssj0011016
Score 2.4622028
Snippet Alzheimer's disease (AD) is the most prevalent form of dementia with an estimated worldwide prevalence of over 30 million people, and its incidence is expected...
SourceID proquest
pubmed
SourceType Aggregation Database
Index Database
StartPage 8532
SubjectTerms Alzheimer Disease - cerebrospinal fluid
Alzheimer Disease - diagnosis
Alzheimer Disease - metabolism
Alzheimer Disease - pathology
Disease Progression
Electrophoresis, Capillary - methods
Follow-Up Studies
Humans
Mass Spectrometry - methods
Metabolomics - methods
Models, Biological
Prognosis
Title Toward a predictive model of Alzheimer's disease progression using capillary electrophoresis-mass spectrometry metabolomics
URI https://www.ncbi.nlm.nih.gov/pubmed/22967182
https://www.proquest.com/docview/1112676678
Volume 84
WOSCitedRecordID wos000309805200016&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NS8MwFA_qBPXgx_yaX0QQPJW1Sdc2JxlD8aBj4JDdRpakbjjb2k5B_ed9L2uZF0HwklNDS_ry3u_lvfx-hFy0olgKMxIO7AZIULRvHMlakSN1iErHsTuyKhGPd2G3Gw0GolceuBVlW2XlE62j1qnCM_Kmh3ddwgB861X26qBqFFZXSwmNZVLjAGXQqsPBooqAmanlS8UUCaBkxSzEvKZUYNnM58-_I0sbYW62_vtt22SzxJa0PTeGHbJkkjpZ61SSbnWy8YN9cJd89W3LLJU0y7Fcg46PWmUcmsa0Pf0cm8mLyS8LWlZxqG3mmhN5UGyYf6JKZihblH_QUk8nG6fwxAQSaEDl1N7jREIEeD2FESxuitegiz3ycHPd79w6pRaDI1t-MHO45loYwZWLAd-LIU8bAfIROkTCGc0N0yLQkZQyGhkumYhcxVyjecsLmGH7ZCVJE3NIqNGu9EKYxWPlG-6KSPm-kbFA8jbI3RrkvFrjIawOli9kYtK3YrhY5QY5mP-oYTan5BgyJgKIsuzoD7OPyTqgHoYByAtOSC2GfW5Oyap6n02K_MyaEIzd3v03L8LT1w
linkProvider ProQuest
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Toward+a+predictive+model+of+Alzheimer%27s+disease+progression+using+capillary+electrophoresis-mass+spectrometry+metabolomics&rft.jtitle=Analytical+chemistry+%28Washington%29&rft.au=Ib%C3%A1%C3%B1ez%2C+Clara&rft.au=Sim%C3%B3%2C+Carolina&rft.au=Mart%C3%ADn-%C3%81lvarez%2C+Pedro+J&rft.au=Kivipelto%2C+Miia&rft.date=2012-10-16&rft.issn=1520-6882&rft.eissn=1520-6882&rft.volume=84&rft.issue=20&rft.spage=8532&rft_id=info:doi/10.1021%2Fac301243k&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1520-6882&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1520-6882&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1520-6882&client=summon