Toward a predictive model of Alzheimer's disease progression using capillary electrophoresis-mass spectrometry metabolomics
Alzheimer's disease (AD) is the most prevalent form of dementia with an estimated worldwide prevalence of over 30 million people, and its incidence is expected to increase dramatically with an increasing elderly population. Up until now, cerebrospinal fluid (CSF) has been the preferred sample t...
Uloženo v:
| Vydáno v: | Analytical chemistry (Washington) Ročník 84; číslo 20; s. 8532 |
|---|---|
| Hlavní autoři: | , , , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
United States
16.10.2012
|
| Témata: | |
| ISSN: | 1520-6882, 1520-6882 |
| On-line přístup: | Zjistit podrobnosti o přístupu |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Alzheimer's disease (AD) is the most prevalent form of dementia with an estimated worldwide prevalence of over 30 million people, and its incidence is expected to increase dramatically with an increasing elderly population. Up until now, cerebrospinal fluid (CSF) has been the preferred sample to investigate central nervous system (CNS) disorders since its composition is directly related to metabolite production in the brain. In this work, a nontargeted metabolomic approach based on capillary electrophoresis-mass spectrometry (CE-MS) is developed to examine metabolic differences in CSF samples from subjects with different cognitive status related to AD progression. To do this, CSF samples from 85 subjects were obtained from patients with (i) subjective cognitive impairment (SCI, i.e. control group), (ii) mild cognitive impairment (MCI) which remained stable after a follow-up period of 2 years, (iii) MCI which progressed to AD within a 2-year time after the initial MCI diagnostic and, (iv) diagnosed AD. A prediction model for AD progression using multivariate statistical analysis based on CE-MS metabolomics of CSF samples was obtained using 73 CSF samples. Using our model, we were able to correctly classify 97-100% of the samples in the diagnostic groups. The prediction power was confirmed in a blind small test set of 12 CSF samples, reaching a 83% of diagnostic accuracy. The obtained predictive values were higher than those reported with classical CSF AD biomarkers (Aβ42 and tau) but need to be confirmed in larger samples cohorts. Choline, dimethylarginine, arginine, valine, proline, serine, histidine, creatine, carnitine, and suberylglycine were identified as possible disease progression biomarkers. Our results suggest that CE-MS metabolomics of CSF samples can be a useful tool to predict AD progression. |
|---|---|
| AbstractList | Alzheimer's disease (AD) is the most prevalent form of dementia with an estimated worldwide prevalence of over 30 million people, and its incidence is expected to increase dramatically with an increasing elderly population. Up until now, cerebrospinal fluid (CSF) has been the preferred sample to investigate central nervous system (CNS) disorders since its composition is directly related to metabolite production in the brain. In this work, a nontargeted metabolomic approach based on capillary electrophoresis-mass spectrometry (CE-MS) is developed to examine metabolic differences in CSF samples from subjects with different cognitive status related to AD progression. To do this, CSF samples from 85 subjects were obtained from patients with (i) subjective cognitive impairment (SCI, i.e. control group), (ii) mild cognitive impairment (MCI) which remained stable after a follow-up period of 2 years, (iii) MCI which progressed to AD within a 2-year time after the initial MCI diagnostic and, (iv) diagnosed AD. A prediction model for AD progression using multivariate statistical analysis based on CE-MS metabolomics of CSF samples was obtained using 73 CSF samples. Using our model, we were able to correctly classify 97-100% of the samples in the diagnostic groups. The prediction power was confirmed in a blind small test set of 12 CSF samples, reaching a 83% of diagnostic accuracy. The obtained predictive values were higher than those reported with classical CSF AD biomarkers (Aβ42 and tau) but need to be confirmed in larger samples cohorts. Choline, dimethylarginine, arginine, valine, proline, serine, histidine, creatine, carnitine, and suberylglycine were identified as possible disease progression biomarkers. Our results suggest that CE-MS metabolomics of CSF samples can be a useful tool to predict AD progression. Alzheimer's disease (AD) is the most prevalent form of dementia with an estimated worldwide prevalence of over 30 million people, and its incidence is expected to increase dramatically with an increasing elderly population. Up until now, cerebrospinal fluid (CSF) has been the preferred sample to investigate central nervous system (CNS) disorders since its composition is directly related to metabolite production in the brain. In this work, a nontargeted metabolomic approach based on capillary electrophoresis-mass spectrometry (CE-MS) is developed to examine metabolic differences in CSF samples from subjects with different cognitive status related to AD progression. To do this, CSF samples from 85 subjects were obtained from patients with (i) subjective cognitive impairment (SCI, i.e. control group), (ii) mild cognitive impairment (MCI) which remained stable after a follow-up period of 2 years, (iii) MCI which progressed to AD within a 2-year time after the initial MCI diagnostic and, (iv) diagnosed AD. A prediction model for AD progression using multivariate statistical analysis based on CE-MS metabolomics of CSF samples was obtained using 73 CSF samples. Using our model, we were able to correctly classify 97-100% of the samples in the diagnostic groups. The prediction power was confirmed in a blind small test set of 12 CSF samples, reaching a 83% of diagnostic accuracy. The obtained predictive values were higher than those reported with classical CSF AD biomarkers (Aβ42 and tau) but need to be confirmed in larger samples cohorts. Choline, dimethylarginine, arginine, valine, proline, serine, histidine, creatine, carnitine, and suberylglycine were identified as possible disease progression biomarkers. Our results suggest that CE-MS metabolomics of CSF samples can be a useful tool to predict AD progression.Alzheimer's disease (AD) is the most prevalent form of dementia with an estimated worldwide prevalence of over 30 million people, and its incidence is expected to increase dramatically with an increasing elderly population. Up until now, cerebrospinal fluid (CSF) has been the preferred sample to investigate central nervous system (CNS) disorders since its composition is directly related to metabolite production in the brain. In this work, a nontargeted metabolomic approach based on capillary electrophoresis-mass spectrometry (CE-MS) is developed to examine metabolic differences in CSF samples from subjects with different cognitive status related to AD progression. To do this, CSF samples from 85 subjects were obtained from patients with (i) subjective cognitive impairment (SCI, i.e. control group), (ii) mild cognitive impairment (MCI) which remained stable after a follow-up period of 2 years, (iii) MCI which progressed to AD within a 2-year time after the initial MCI diagnostic and, (iv) diagnosed AD. A prediction model for AD progression using multivariate statistical analysis based on CE-MS metabolomics of CSF samples was obtained using 73 CSF samples. Using our model, we were able to correctly classify 97-100% of the samples in the diagnostic groups. The prediction power was confirmed in a blind small test set of 12 CSF samples, reaching a 83% of diagnostic accuracy. The obtained predictive values were higher than those reported with classical CSF AD biomarkers (Aβ42 and tau) but need to be confirmed in larger samples cohorts. Choline, dimethylarginine, arginine, valine, proline, serine, histidine, creatine, carnitine, and suberylglycine were identified as possible disease progression biomarkers. Our results suggest that CE-MS metabolomics of CSF samples can be a useful tool to predict AD progression. |
| Author | Cifuentes, Alejandro Ibáñez, Clara Simó, Carolina Winblad, Bengt Kivipelto, Miia Martín-Álvarez, Pedro J Cedazo-Mínguez, Angel |
| Author_xml | – sequence: 1 givenname: Clara surname: Ibáñez fullname: Ibáñez, Clara organization: Laboratory of Foodomics, CIAL (CSIC), Nicolas Cabrera 9, 28049 Madrid, Spain – sequence: 2 givenname: Carolina surname: Simó fullname: Simó, Carolina – sequence: 3 givenname: Pedro J surname: Martín-Álvarez fullname: Martín-Álvarez, Pedro J – sequence: 4 givenname: Miia surname: Kivipelto fullname: Kivipelto, Miia – sequence: 5 givenname: Bengt surname: Winblad fullname: Winblad, Bengt – sequence: 6 givenname: Angel surname: Cedazo-Mínguez fullname: Cedazo-Mínguez, Angel – sequence: 7 givenname: Alejandro surname: Cifuentes fullname: Cifuentes, Alejandro |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/22967182$$D View this record in MEDLINE/PubMed |
| BookMark | eNpNkEtPwzAQhC1URB9w4A8g3-AS8KN1nGNV8ZKQONB75Njb1hDHIZuAgD-PBUXisjtafRrN7JSMmtgAIaecXXIm-JWxknExly8HZMIXgmVKazH6p8dkivjMGOeMqyMyFqJQOddiQr7W8d10jhraduC87f0b0BAd1DRu6LL-3IEP0J0jdR7BICQubjtA9LGhA_pmS61pfV2b7oNCDbbvYruLifCYBYNIsf05BugTkaapYh2Dt3hMDjemRjjZ7xl5urler-6yh8fb-9XyITOLueoz6aQroJCWpT6cb4QuKpHLwuVsrrmTIFyhnDbG6AqkEYVmVjBwcsGVADEjF7-uKfjrANiXwaOFFLiBOGDJORcqVyrXCT3bo0MVwJVt50OqVf69S3wDPYtwJQ |
| CitedBy_id | crossref_primary_10_1155_2017_5472792 crossref_primary_10_1016_j_clinbiochem_2019_07_008 crossref_primary_10_3389_fphar_2024_1441755 crossref_primary_10_1016_j_pnpbp_2023_110830 crossref_primary_10_1007_s11481_014_9578_5 crossref_primary_10_1007_s11011_025_01647_1 crossref_primary_10_1016_j_jtice_2017_05_011 crossref_primary_10_3390_nu11061196 crossref_primary_10_1016_j_jchromb_2014_10_022 crossref_primary_10_1016_j_neuroscience_2018_10_001 crossref_primary_10_1016_j_jchromb_2017_05_003 crossref_primary_10_1016_j_aca_2025_343727 crossref_primary_10_1016_j_brainres_2021_147704 crossref_primary_10_3389_fnagi_2019_00090 crossref_primary_10_1016_j_clinbiochem_2014_07_019 crossref_primary_10_1016_j_nbd_2023_106312 crossref_primary_10_1002_elps_201200694 crossref_primary_10_3233_NHA_180043 crossref_primary_10_3390_biomedicines9030298 crossref_primary_10_3390_cells11213523 crossref_primary_10_1002_elps_201300470 crossref_primary_10_2217_fnl_13_36 crossref_primary_10_1016_j_chroma_2013_06_005 crossref_primary_10_1016_j_jpba_2015_01_025 crossref_primary_10_1016_j_pneurobio_2016_03_003 crossref_primary_10_3389_fpsyt_2023_1149947 crossref_primary_10_1016_j_aca_2019_05_004 crossref_primary_10_1016_j_jchromb_2017_02_008 crossref_primary_10_1016_j_jprot_2019_04_008 crossref_primary_10_1097_NEN_0000000000000091 crossref_primary_10_1002_ddr_21073 crossref_primary_10_1038_s41598_019_50205_0 crossref_primary_10_1038_s44324_024_00016_3 crossref_primary_10_1039_C4MB00747F crossref_primary_10_1371_journal_pone_0063644 crossref_primary_10_1002_1873_3468_13782 crossref_primary_10_1038_s41598_020_68739_z crossref_primary_10_3390_metabo14050286 crossref_primary_10_1016_j_bbadis_2013_06_014 crossref_primary_10_1002_elps_201300561 crossref_primary_10_1002_elps_201400392 crossref_primary_10_1007_s00216_025_06048_y crossref_primary_10_1093_annweh_wxw032 crossref_primary_10_1002_jnr_24048 crossref_primary_10_1038_s44400_025_00021_3 crossref_primary_10_1016_j_nbd_2022_105782 crossref_primary_10_1039_C4AN01296H crossref_primary_10_1016_j_dyepig_2019_107628 crossref_primary_10_1159_000364816 crossref_primary_10_1016_j_aca_2013_07_042 crossref_primary_10_1016_j_jchromb_2018_05_031 crossref_primary_10_1038_s41598_019_40353_8 crossref_primary_10_1002_elps_201400388 crossref_primary_10_1016_j_npep_2023_102356 crossref_primary_10_1002_bmc_3453 crossref_primary_10_1002_elps_201900115 crossref_primary_10_1016_j_jgg_2019_11_009 crossref_primary_10_3390_metabo12090864 crossref_primary_10_3233_JAD_200305 crossref_primary_10_1007_s00216_013_7061_4 crossref_primary_10_1038_npp_2013_145 crossref_primary_10_1371_journal_pone_0166277 crossref_primary_10_1111_fcp_12654 crossref_primary_10_1007_s00216_014_8102_3 crossref_primary_10_3389_fnagi_2016_00277 crossref_primary_10_1007_s00216_013_6882_5 crossref_primary_10_7603_s40681_014_0025_y crossref_primary_10_1002_jms_3782 crossref_primary_10_1016_j_trac_2024_117626 crossref_primary_10_1016_j_jalz_2017_01_020 crossref_primary_10_1038_s41598_020_71832_y crossref_primary_10_3233_JAD_210471 crossref_primary_10_1016_j_jalz_2018_01_003 crossref_primary_10_3233_JAD_141899 crossref_primary_10_1155_2015_354671 crossref_primary_10_1039_C8FO02067A crossref_primary_10_3390_ijms26073015 crossref_primary_10_1002_elps_201500027 crossref_primary_10_1016_j_ijdevneu_2017_08_001 crossref_primary_10_1016_j_trac_2018_07_006 crossref_primary_10_1016_j_nut_2021_111248 crossref_primary_10_1038_s41467_024_49589_z crossref_primary_10_2147_CIA_S298743 crossref_primary_10_1007_s11306_021_01828_w crossref_primary_10_1016_j_chroma_2018_07_007 crossref_primary_10_5604_01_3001_0054_9118 crossref_primary_10_1016_j_jpba_2020_113424 crossref_primary_10_1371_journal_pone_0285401 crossref_primary_10_1016_j_arr_2025_102751 crossref_primary_10_3233_JAD_180711 crossref_primary_10_1002_elps_201400450 crossref_primary_10_3390_ijms24054960 crossref_primary_10_1002_elps_201400196 crossref_primary_10_4155_bio_2016_0216 crossref_primary_10_1051_ocl_2018027 crossref_primary_10_4155_bio_2018_0135 crossref_primary_10_1016_j_jpba_2018_08_046 crossref_primary_10_1016_j_bbadis_2016_03_001 crossref_primary_10_3390_nu12061845 crossref_primary_10_1016_j_tma_2022_10_001 crossref_primary_10_1371_journal_pone_0225380 crossref_primary_10_1186_s40364_018_0119_x crossref_primary_10_1007_s11306_015_0773_z crossref_primary_10_1038_s41598_024_77921_6 crossref_primary_10_1016_j_freeradbiomed_2018_06_038 crossref_primary_10_1016_j_trac_2013_06_013 crossref_primary_10_1111_aos_14971 crossref_primary_10_1155_2021_8868690 crossref_primary_10_3390_metabo11040233 crossref_primary_10_1111_jnc_15128 |
| ContentType | Journal Article |
| DBID | CGR CUY CVF ECM EIF NPM 7X8 |
| DOI | 10.1021/ac301243k |
| DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
| DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | no_fulltext_linktorsrc |
| Discipline | Engineering Chemistry |
| EISSN | 1520-6882 |
| ExternalDocumentID | 22967182 |
| Genre | Research Support, Non-U.S. Gov't Journal Article |
| GroupedDBID | --- -DZ -~X .DC .K2 23M 4.4 53G 55A 5GY 5RE 5VS 6J9 7~N 85S AABXI AAHBH ABHFT ABHMW ABJNI ABMVS ABOCM ABPPZ ABQRX ABUCX ACBEA ACGFO ACGFS ACGOD ACIWK ACJ ACKOT ACNCT ACPRK ACS ADHLV AEESW AENEX AFEFF AFRAH AGXLV AHGAQ ALMA_UNASSIGNED_HOLDINGS AQSVZ BAANH BKOMP CGR CS3 CUPRZ CUY CVF D0L EBS ECM ED~ EIF EJD F5P GGK GNL IH9 IHE JG~ KZ1 LG6 LMP NPM P2P PQQKQ ROL RXW TAE TN5 UHB UI2 UKR VF5 VG9 W1F WH7 X6Y XSW YZZ ZCA ~02 7X8 ABBLG ABLBI |
| ID | FETCH-LOGICAL-a546t-3d3d9e93c015211f289b2739d70481d3e2d96d8aaa8be3a2980c20ed35162e2 |
| IEDL.DBID | 7X8 |
| ISICitedReferencesCount | 139 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000309805200016&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1520-6882 |
| IngestDate | Fri Jul 11 15:56:43 EDT 2025 Thu Apr 03 07:03:37 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 20 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-a546t-3d3d9e93c015211f289b2739d70481d3e2d96d8aaa8be3a2980c20ed35162e2 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| PMID | 22967182 |
| PQID | 1112676678 |
| PQPubID | 23479 |
| ParticipantIDs | proquest_miscellaneous_1112676678 pubmed_primary_22967182 |
| PublicationCentury | 2000 |
| PublicationDate | 2012-10-16 |
| PublicationDateYYYYMMDD | 2012-10-16 |
| PublicationDate_xml | – month: 10 year: 2012 text: 2012-10-16 day: 16 |
| PublicationDecade | 2010 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States |
| PublicationTitle | Analytical chemistry (Washington) |
| PublicationTitleAlternate | Anal Chem |
| PublicationYear | 2012 |
| SSID | ssj0011016 |
| Score | 2.4622028 |
| Snippet | Alzheimer's disease (AD) is the most prevalent form of dementia with an estimated worldwide prevalence of over 30 million people, and its incidence is expected... |
| SourceID | proquest pubmed |
| SourceType | Aggregation Database Index Database |
| StartPage | 8532 |
| SubjectTerms | Alzheimer Disease - cerebrospinal fluid Alzheimer Disease - diagnosis Alzheimer Disease - metabolism Alzheimer Disease - pathology Disease Progression Electrophoresis, Capillary - methods Follow-Up Studies Humans Mass Spectrometry - methods Metabolomics - methods Models, Biological Prognosis |
| Title | Toward a predictive model of Alzheimer's disease progression using capillary electrophoresis-mass spectrometry metabolomics |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/22967182 https://www.proquest.com/docview/1112676678 |
| Volume | 84 |
| WOSCitedRecordID | wos000309805200016&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEF7UCurBR33VFysInkKbTbLJnqQUxYOWgkV6K5vdjS3WJiZVUP-8M5uUehEEL3vKi81k5pvMzPcRciECCKoCmY9DJh2Ix7EjRKgcE8U-5D0q4HbC-_Eu7HajwUD0qh9uRdVWOfeJ1lHrVOE_8qaLsy4hB996lb06qBqF1dVKQmOZ1DyAMmjV4WBRRcDM1PKlYooEUHLOLMTcplRg2cz3nn9HljbC3Gz999m2yWaFLWm7NIYdsmSmdbLWmUu61cnGD_bBXfLVty2zVNIsx3INOj5qlXFomtD25HNkxi8mvyxoVcWhtpmrJPKg2DD_RJXMULYo_6CVnk42SuGIMSTQgMqpneNEQgS4PYUVLG6CY9DFHnm4ue53bp1Ki8GRgc9njqc9LYzwVAsDvptAnhYD8hE6RMIZ7RmmBdeRlDKKjSeZiFqKtYz2Apczw_bJyjSdmkNCudbSNzEAmwT8B1xUuULyhMexryLXmAY5n-_xEHYHyxdyatK3YrjY5QY5KF_UMCspOYaMCQ5Rlh394exjsg6oh2EAcvkJqSXwnZtTsqreZ-MiP7MmBGu3d_8NS6jT5g |
| linkProvider | ProQuest |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Toward+a+predictive+model+of+Alzheimer%27s+disease+progression+using+capillary+electrophoresis-mass+spectrometry+metabolomics&rft.jtitle=Analytical+chemistry+%28Washington%29&rft.au=Ib%C3%A1%C3%B1ez%2C+Clara&rft.au=Sim%C3%B3%2C+Carolina&rft.au=Mart%C3%ADn-%C3%81lvarez%2C+Pedro+J&rft.au=Kivipelto%2C+Miia&rft.date=2012-10-16&rft.issn=1520-6882&rft.eissn=1520-6882&rft.volume=84&rft.issue=20&rft.spage=8532&rft_id=info:doi/10.1021%2Fac301243k&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1520-6882&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1520-6882&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1520-6882&client=summon |