An Introduction to Nonlinear Optimization Theory

The goal of this book is to present the main ideas and techniques in the field of continuous smooth and nonsmooth optimization. Starting with the case of differentiable data and the classical results on constrained optimization problems, and continuing with the topic of nonsmooth objects involved in...

Celý popis

Uloženo v:
Podrobná bibliografie
Hlavní autoři: Durea, Marius, Strugariu, Radu
Médium: E-kniha
Jazyk:angličtina
Vydáno: Germany De Gruyter 2014
Walter de Gruyter GmbH
De Gruyter Open Poland
Sciendo
Vydání:1
Témata:
ISBN:3110426048, 9783110426045, 9783110427356, 3110427354, 9783110426038, 311042603X
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Obsah:
  • Bibliography -- List of Notations -- Index
  • Intro -- Preface -- 1 Preliminaries -- 1.1 Rp Space -- 1.2 Limits of Functions and Continuity -- 1.3 Differentiability -- 1.4 The Riemann Integral -- 2 Nonlinear Analysis Fundamentals -- 2.1 Convex Sets and Cones -- 2.2 Convex Functions -- 2.2.1 General Results -- 2.2.2 Convex Functions of One Variable -- 2.2.3 Inequalities -- 2.3 Banach Fixed Point Principle -- 2.3.1 Contractions and Fixed Points -- 2.3.2 The Case of One Variable Functions -- 2.4 Graves Theorem -- 2.5 Semicontinuous Functions -- 3 The Study of Smooth Optimization Problems -- 3.1 General Optimality Conditions -- 3.2 Functional Restrictions -- 3.2.1 Fritz John Optimality Conditions -- 3.2.2 Karush-Kuhn-Tucker Conditions -- 3.2.3 Qualification Conditions -- 3.3 Second-order Conditions -- 3.4 Motivations for Scientific Computations -- 4 Convex Nonsmooth Optimization -- 4.1 Further Properties and Separation of Convex Sets -- 4.2 The Subdifferential of a Convex Function -- 4.3 Optimality Conditions -- 5 Lipschitz Nonsmooth Optimization -- 5.1 Clarke Generalized Calculus -- 5.1.1 Clarke Subdifferential -- 5.1.2 Clarke Tangent and Normal Cones -- 5.1.3 Optimality Conditions in Lipschitz Optimization -- 5.2 Mordukhovich Generalized Calculus -- 5.2.1 Fréchet and Mordukhovich Normal Cones -- 5.2.2 Fréchet and Mordukhovich Subdifferentials -- 5.2.3 The Extremal Principle -- 5.2.4 Calculus Rules -- 5.2.5 Optimality Conditions -- 6 Basic Algorithms -- 6.1 Algorithms for Nonlinear Equations -- 6.1.1 Picard's Algorithm -- 6.1.2 Newton's Method -- 6.2 Algorithms for Optimization Problems -- 6.2.1 The Case of Unconstrained Problems -- 6.2.2 The Case of Constraint Problems -- 6.3 Scientific Calculus Implementations -- 7 Exercises and Problems, and their Solutions -- 7.1 Analysis of Real Functions of One Variable -- 7.2 Nonlinear Analysis -- 7.3 Smooth Optimization -- 7.4 Nonsmooth Optimization
  • 2 Nonlinear Analysis Fundamentals --
  • Contents --
  • 3 The Study of Smooth Optimization Problems --
  • 4 Convex Nonsmooth Optimization --
  • Preface --
  • 5 Lipschitz Nonsmooth Optimization --
  • Index
  • 6 Basic Algorithms --
  • Frontmatter --
  • List of Notations --
  • 7 Exercises and Problems, and their Solutions --
  • 1 Preliminaries --
  • Bibliography --